
Dynam icsofArithm etic

A ConnectionistView ofArithm eticSkills

Richard Dallaway

CSR P 306

February1994

ISSN 1350–3162

Contents

Acknowledgements iv

Abstract v

3.1.3 Training set conditional probabilities : 36
3.2 Simulations for 2�2 to 9�9 : 38

3.2.1 Training : 38
3.2.2 Recall : 38
3.2.3 Results : 39
3.2.4 Comments : 41

3.3 Simulations for 0�0 to 9�9 : 44
3.3.1 Training : 44
3.3.2 Results : 45
3.3.3 Comments : 46

3.4 Further experiments : 49
3.4.1 One-of-N input encoding : 49
3.4.2 Training without a frequency skew : 51
3.4.3 McCloskey & Lindermann’s input encoding : : : : : : : : : : : : : : : 51
3.4.4 Predictions for the 10, 11 and 12 tables : : : : : : : : : : : : : : : : : : : 53
3.4.5 Damaging the network : 55

3.5 Discussion : 58
3.5.1 Choice of output representation : 59
3.5.2 Rule based processing : 60
3.5.3 Verification and primed production tasks : : : : : : : : : : : : : : : : : 60

3.6 Summary : 62

Part II Multicolumn arithmetic

Chapter 4 Symbolic accounts of arithmetic 66
4.1 Bug phenomena : 67
4.2 Models : 69

5.4.1 Finite state machines :

The University of Sussex

Dynamics of Arithmetic
A Connectionist View of Arithmetic Skills

CHAPTER 1

Introduction

Simple arithmetic skills are difficult to master. Although we understand arithmetic well
intellectually, we falter in its execution. As Marr put it: “I have no doubt that when
we do mental arithmetic we are doing something well, but it is not arithmetic” (1982,
p. 348). Children have acquired a host of impressive skills by the time they are taught
formal arithmetic: they have learned a language and can use vision for autonomous
navigation in a hostile environment. In contrast, the “simple” tasks of arithmetic require
at least a further five or six years of schooling. Once the skills are learned there are
many opportunities for error. Adults, for example, make plenty of mistakes recalling
multiplication facts—especially on the “tricky” problems, such as 8�4 or 9�8. Arithmetic,

review draws on normal and brain-damaged studies of the reaction times and errors of
adults recalling multiplication facts.

Chapter 3 describes the connectionist model built to capture the reaction times and
errors of adults. The basic idea is a simple one: memory for multiplication facts consists
of a set of associations between operands and products; recall is the process of spread-
ing activation, resulting in a product’s activation exceeding a threshold. The activation
spreads at different rates for different problems, giving different reaction times. Occa-
sionally, when under some kind of time pressure, a false product exceeds the threshold.
Most of these errors are operand errors, and the reasons for this are explored.

By varying the assumptions of the simulations, certain factors were found to be
important in determining the phenomena. There is some evidence that smaller problems
are experienced more often than larger problems, and this skew in frequency has a strong
effect on the model. Also, the input encoding to the network (representing the operands
of a problem) can effect the distribution of errors and reaction times. In particular, the
degree of “coarseness” or “sharpness” of the encoding is explored.

Other phenomena are also investigated. For example, it seems that zero problems
(zero times anything) are solved by the rule 0�N=0. There is plenty of evidence for
this, including: zero problems are solved very quickly; errors are of the form 0�N=N;
brain-damaged patients can re-learn zero problems from exposure to just 2 examples, but
not non-zero problems. There is certainly something special about zero, and it is not clear
how this fits into the associative framework.

1.2 Part II—Multicolumn multiplication

Verbal number

comprehension

Arabic number

comprehension

Abstract internal
representation

Calculation

proceduresfacts

Arithmetic

Calculation mechanisms

8x3

"Eight times three" Verbal number

production

Arabic number

production

"Twenty-four"

24

Number Number
comprehension

mechanisms
production

mechanisms

Figure 1.1. The structure of the cognitive number processing system (after
McCloskey, Aliminosa & Sokol 1991, figure 1).

importance of various assumptions, or changes to assumptions. Hence, the first contri-
bution is an explicit model that can be tested and criticised. Variations on the model
aim to understand the causes of the phenomenon. The causes include the frequency of
problems, the creation of false associations and the nature of the facts themselves.

The second aim is to demonstrate an alternative to production system models of
multicolumn arithmetic, and to show that such an approach is useful. This constitutes the
first connectionist model of this phenomena. Errors are characterized as perturbations
to processing trajectories, rather than faulty rules or repairs to impasses. This view
conceptualizes learning as the formation and differentiation of states in something similar
to a finite state machine. In addition, the analysis of the system is a useful analysis of a
sequential network learning a large structured problem.

4

Part I

Mental Arithmetic

CHAPTER 2

Memory for Arithmetic Facts

There are a number of ways to find the answer to “6�7”. Strategies might include
counting a row of six 7s, recalling the answer to 6�6 and adding on another 6, using a
calculator, or pure recall. Children tend to use a number of strategies, but as they become
older they tend to rely on recall alone (Siegler 1988).

This chapter investigates adults’ recall of multiplication facts. Although adults do use
other strategies, recall seems to be most frequently used, and it is also the strategy that
has been the subject of many detailed experiments. First, a review is presented of the
typical reaction times (RTs) and errors of adults recalling multiplication facts. A number
of models have been proposed to account for the phenomena, and these are reviewed in
section 2.2. A new connectionist model of fact recall, based on McClelland’s (1979, 1988)
“cascade” equations, is described in chapter 3.

2.1 Phenomena

When asked to recall answers to single-digit multiplication problems, both children and
adults exhibit well documented patterns of behaviour. These behaviours are recorded
from experiments based around three kinds of task: production, verification, and primed
production. In the production task, subjects are presented with two digits and asked
to recall the product. The primed production task is similar to the production task, but
before the two digits are presented, the subject is shown a number which may or may not
be the correct answer to the problem. For the verification task the subject is presented
with a problem and candidate solution (“6�7=48?”) and has to decide if the equation is
true or false. In all cases, errors and RTs are recorded.

As production is the every-day task that subjects are familiar with, it is the one
that is considered here. Many of the experimental results come from normal subjects
(e.g., Campbell & Graham 1985; Miller, Permutter & Keating 1984; Campbell 1987;
Ashcraft 1982; Siegler 1988; Harley 1991; Krueger 1986). However, there are interest-
ing results from brain-damaged subjects (McCloskey, Aliminosa & Sokol 1991; Sokol,
McCloskey, Cohen & Aliminosa 1991; McCloskey & Caramazza 1985), and these are
considered in section 2.1.2.

6

2 3 4 5 6 7 8 9

0.7

0.8

0.9

1

1.1

1.2

1.5

1.7

1.9

2.1

Adult RT (sec)

4 6 8 9 10 12 14 15 16 18 20 21 24 25 27 28 30 32 35 36 40 42 45 48 49 54 56 63 64 72 81
2�2 c
2�3 c
3�

be clustered around the correct product. More specifically, the errors can be classified as
follows (after McCloskey, Harley & Sokol 1991):

� Operand errors, for which the erroneous product is correct for a problem that shares
a digit (operand) with the presented problem. For example, 8�8=40 is an operand
error because the problem shares an operand, 8, with 5�8=40.

� Close operand errors, a subclass of operand errors, where the erroneous product is
also close in magnitude to the correct product. That is, for the problem a � b, the
error will often be correct for the problem (a � 2)� b or a � (b� 2). An example is
5�4=24. This phenomenon is referred to as the “operand distance effect”.

� Frequent product errors, where the error is one of the five products 12, 16, 18, 24 or
36. These products happen to occur more frequently than most in the multiplication

errors.

2.1.3 Rule based processing

Figure 2.3 shows the RT for problems 0�0 to 9�

 600.00

 620.00

 640.00

 660.00

 680.00

 700.00

 720.00

 740.00

 760.00

 780.00

 800.00

 140.00

 160.00

 180.00

 200.00

 220.00

 240.00

 260.00

 280.00

 300.00

 320.00

 340.00

Harley RT (msec) Miller RT (msec)

 0 2 4 6 8 1 3 5 7 9

Miller

Harley

Table

Figure 2.3. Plot of mean correct RT per multiplication table collapsed over

6x7

42

56

35

43

48

6x8

46

56

48

54

42

Figure 2.4. The problem-to-answer representations for the distribution of
associations model. Line thickness depicts strength of association (figure
based on figure 3 from McCloskey, Harley & Sokol 1991).

up an adult’s multiplication memory is formed by the success and failures of children’s
back-up strategies.

Each problem is connected to a set of candidate answers consisting of the correct
product plus some incorrect answers. For adults it is assumed that the strongest associ-
ations are to correct products (see figure 2.4). For children, however, the distribution of
associations will be “flatter”, representing limited exper

associative strengths is equivalent to the writing down of a problem.
If no answer is given after elaboration, a back-up strategy is used. The strategy

presented by Siegler is repeated addition, where a counter is incrementing by n, m times
for the problem n�m.

Reaction time

RT is dependent on how many of the above stages were processed before an answer was
produced. Problems produced by repeated counting have to have passed through the

in 30, or one too few, 18. Both are operand errors. Moreover, because the strategy is more
likely to err once, rather than twice or more, operand errors will be close to the correct
product.

The other way in which the back-up strategy can produce an incorrect answer is by
adding two numbers and getting the wrong result (e.g., 2 + 2 = 5). It turns out, from
McCloskey, Harley & Sokol’s (1991) analysis, that this behaviour will produce more non-
table errors than table errors. This is the opposite of the results reported by Campbell
& Graham (1985) for adults. Siegler presumes that counting errors will be distributed
around the correct answer. That is, the error 6�7=41 (under counted by 1) and 6�7=43
(over counted by 1) occur more often than errors that result from larger miscounts. Given
this assumption, McCloskey, Harley & Sokol note that for the 64 problems 2�2 to 9�9,
errors of the form (n�m)�1 turn out to be non-table errors twice as often as table errors.
Hence, Siegler’s model predicts the opposite of the observed situation, where table errors
occur twice as often as non-table errors for adults.

Although more explicit than many models, there are some details missing from the
DOA account. For example, answers are retrieved from the associative network with
a probability proportional to associative strength. This aspect of the model is not fully
elaborated: is it a spreading activation system? If so, how does activation spread? By
what mechanism are responses selected? As will be shown later, many models have
focused on just this aspect of retrieval.

The model contains a number of separate mechanisms: recall, elaboration, sophisti-
cated guessing, and back-up. No details were given about the nature of the overall control
mechanisms: what factors determine why sophisticated guessing is used sometimes (20
per cent of trials), but elaboration used at other times? How and why is the associative
strength temporarily boosted for the elaboration stage?

The simulation results reported by Siegler (1988) were for just 20 problems due to
limited resources, and this should be extended.

Finally, it is assumed that back-up strateg5(s)8.32127(m)7.885064646(t)-2.3145505345(e)-2.31451(8)-3.198.70295(a)-3.83(-)4.83163(t)-32w

Nevertheless, given the assumptions stated above, Campbell & Graham predict that
the first problems learned will impair the learning of later problems (proactive inter-
ference). These smaller learned problems will also act as a source of error for larger
problems. That is, during learning, the smaller problems will not have many alternative
answers to produce as an error.

Errors

Operand errors may occur because each operand unit is connected to a set of product
units. On some occasions, the wrong product may be selected, giving an operand error.
Close operand errors are produced because the general magnitude units activate products
that are approximately the correct magnitude for the presented problem.

Errors also occur because of false associations. During learning, inputs are associated
with the correct product. However, due to the fact that activation spreads, other product
units will be active. Associations will also be made to these, slightly active, false products.

Learning usually occurs in lessons, where a number of problems will be presented and
solved. Campbell & Graham argue that residual activation of problem units and product
units other than the one being solved will be associated with the current problem. In
this way, false associations are formed, which may be produced as errors. In particular,
it is assumed that problems close in magnitude (e.g., 7�8 and 7�9) are more likely to
be learned in the same lesson than more distant problems (such as 7�8 and 7�2). As
McCloskey, Harley & Sokol (1991) note, this suggestion is not backed by any empirical
evidence. If true, it would further contribute towards the production of close operand
errors.

The connections between products that share digits will produce some table errors,
but this seems rather “ad hoc—the associations between answers sharing a digit seem to
play no role in the model other than that of explaining certain table errors” (McCloskey,
Harley & Sokol 1991, p. 393).

As all the answers units correspond to a product, there is no account of non-table
errors.

Retrieval

One of the founding ideas behind the NI model is that the activation of incorrect answers
interferes with recall of the correct answer. That is, as interference increases, RT will
become longer, and there will be an increased chance of an error.

As mentioned, retrieval is a spreading activation process. The rules governing the
spread of activity are not specified, and nor is the response mechanism. Presumably the
most active product unit is selected as the answer. RT is assumed to be a function of
answer activity, but again, this is not specified.

Discussion

The lack of specific detail with this model (no activation rules, no response mechanisms
for correct or erroneous answers) is not surprising given that the system was not im-
plemented. As it stands the system is a conceptual analysis of arithmetic and raises a
number of questions:

� Why so many kinds of nodes? What does each knowledge source contribute to the
model? Are they all necessary?

� How do these knowledge sources develop? In particular, how are the magnitude
units formed?

18

� How are problem-size exceptions handled? Although the system can accommodate
exceptions, it would presumably have to be via problem frequency or order. Camp-
bell & Graham (1985) briefly comment on the possibility of a rule-based system for
5s (the product should end in zero or five), but do not pursue it in any depth.

� By what means are the associations strengthened? A brief description was given,
but without more specific learning mechanisms it is not possible to determine the
relative importance of each kind of link.

The model itself lacks detailed mechanisms, but provides a useful source of ideas for
what factors may contribute to the phenomena.

2.3 Previous connectionist models

The rest of this chapter considers those models that are strongly connectionist. It seems

Recall

When simulating recall, the operand units are clamped, and the answer units compute
their activation as follows:

o

i

(t+ 1) = �

X

j

w

ij

o

j

(t) + o

i

(t) + �f

i

(0)

where: o
i

(t) is the output of unit i at time t, which is limited to be between �1 and +1;
� is the feedback constant; is the decay constant; and f

i

(0) is the external input to the
unit, multiplied by a constant �.

Processing stops when a product unit exceeds a threshold of 0.8.
As described so far, the system will always produce the correct response. Rickard

et al. report that an incorrect product units never exceed an activation of 0.1. RT is the
number of cycles it takes before a product unit exceeds the threshold. All problems reach
threshold at the same time (after 43 cycles).

Response times

To explain the problem-size effect, Rickard et al. hand modified the problem-to-product
weights. It is assumed that the more frequently occurring problems will cause stronger
associations between units. To implement this, the problem set was split into two sets:
“small” problems, with products of 30 or less; and the remaining “large” problems. Based
on the assumption that larger problems are experienced less often, the weights between
all units involved in the larger problems were decremented by 10 per cent from the values
given in figure 2.7. After this change 42 cycles were required for small problems, and 51
for the large problems.

False associations are also assumed to interfere with retrieval. To simulate this, false
connections were made between a problem and various product units—one each for an
operand error, close operand error, table error, and non-table error. The weights for

…where + signifies an activation of 1:0 and - signifies�1:0. There are enough input units

Operand errors 78.71
Close operand errors 71.61
Table errors 5.16
Operation error 0.0
Non-table errors 16.13

Table 2.3. Mean percentage error rates from three networks reported by

to see if this is true of human non-table errors.

A number of experiments were run to determine the importance of the order and
frequency of problems. Holding frequency constant and varying the ordering of prob-
lems, as described above, did not produce a problem-size effect. Instead, just varying the
frequency of problems produced the best results. Hence, it seems that the main cause
of the problem-size effect is the frequency of problems, not the order in which they are
presented.

Damage

The results from brain-damaged subjects (section 2.1.2) were simulated by damaging the
weights of the trained networks. There are many ways to damage a network. Examples
include: perturbing the weights, removing units, changing the activation function or
response mechanism. McCloskey & Lindermann chose to reduce the magnitudes of the
weights by a random percentage, with a mean of 40 per cent. These damaged networks
were then tested on each problem 30 times, using the 16 step annealing schedule.

As expected, the accuracy of the networks fell to a mean level of 79 per cent. Like
human subjects, the damage was non-uniform. That is, some problems were severely

to how this is implemented in connectionist technology. McCloskey & Lindermann
state that for undamaged networks most of the answers are unambiguous, hence a
small amount of competition between the output units could be used as a response
mechanism.

� It appears that non-table errors are occurring more frequently for the networks than
for humans. The causes behind this need to be explored. For example, to what
degree do the connections between the output units contribute to this effect? Are
these connections needed at all?

� Given that the output layer was split into a tens field and a units field, it is surprising
that MATHNET did not exhibit the RT dip associated with 5s problems. One would
have expected the system to exploit the fact that all 5s problems end in zero or five.

� The system is run until all the answer nodes have saturated. Perhaps it would be
possible for the system to show different RTs for the units and tens fields. That is, it
may be the case that the system can produce the tens part of the answer before the
units part (e.g., “six sevens are…forty…umm…two”). Whether humans or network

For adults, tie problems are faster than their position in the multiplication table would
suggest. Although Siegler (1988) found a frequency advantage for tie problems in school
textbooks, simulations suggest (section 3.3.1) that this is not enough to account for the tie
problems’ RT advantage. So for ties an additional input unit (tie flag) is set to 1.0. Without
this, the tie problems were consistently among the slowest problems for the networks.
Hence, the flag is an ad hoc inclusion which exists only to allow the network to produce
faster RTs for tie problems. Tie problems are difficult to account for without some change
to the input encoding such as the inclusion of a tie flag. The information that the two
presented digits are equal could be computed by the network: the problem is the inverse
of XOR. The inclusion of a tie flag is making the information explicit. The observation
here is that the tie flag speeds response on tie problems. The flag might be thought of as
reflecting the perceptual distinctiveness of tie problems, possibly as a result of children
learning notions like “same” and “different”.

3.1.1 Recall

Networks of the kind described here usually have no reaction time: the outputs are

10 20 30 40 50
Steps

0.2

0.3

0.4

0.6

0.8

w=1.5 t=16 w=1.0 t=37

w=-1

Activity

0.7

0.5

Figure 3.2. Demonstration of the cascade equations.

normalized. That is, the response of an output unit is the normalized activation value:

o

i

=

a

i

P

j

a

j

Here i and j refer to all the output units. There are a number of ways this normalization
could be implemented in connectionist terms, but at the moment it is done externally.
Throughout the chapter, and in the figures, this normalized value is used unless otherwise
stated. To summarize: first the net input is computed; this is fed into the logistic function
to give the activation; the activation is normalized to give an output signal. Processing
continues until the output of a product output unit exceeds a specified threshold.

To avoid any initial bias towards particular outputs, the activity of the network is
started from a neutral state. Following McClelland & Rumelhart (1988), the initial state
of the network is the state that results from processing an all-zeros input pattern. Note
that it is not usually enough to start the system by setting the hidden vector to all zeros:
output units may be selective to the non-activity of certain hidden units.

Originally-2.42-1.5l532016(u)12.2981e5(x)ty2

problem, as simulations show that individual products do not have any advantage over
other products. Thus, the DKU is a computational consideration, and it is not clear what
role it might play in the equivalent human system. The DKU is not to be confused with
subjects responding “don’t know” to problems, or omission errors in general.

3.1.2 Training

Two sets of experiments were run. In the first, the system was trained on all the problems
2�2 to 9�9. The second experiment expanded the architecture to cover 0�0 to 9�9. The
experiments are described separately below. In all cases the problems were trained in a
random order using backpropagation (learning rate 0.01, momentum 0.9).

During training, the presentation frequency of each pattern is skewed in favour of the

Constraint Output units Probability that unit is…
Digit Value 0 1

9 0.0 81, 72, 64, 63, 56, 54, 49, 48, 45, 42,
40, 35, 30, 25

1.0 0.0

9 0.5 81, 63, 54, 49, 45, 42, 36, 35, 30, 28,
27, 25, 21, 20, 18, 15, 14, 12, 10, 9, 8,
6, 4, DKU

1.0 0.0

5 0.000016 81, 72, 63, 54, 45, 36, 27, 18 0.972 0.125

5 0.001973 16 0.875 0.125

5 0.0628 21 0.875 0.125

5 0.5 36, 24, 12 0.875 0.125

5 1.0 45, 40, 35, 25, 20, 15, 10 0.875 0.125

5 0.001973 72, 64, 56, 48, 40, 32, 24, 18, 14, 12,
10, 8, 6, 4

0.9375 0.0625

5 0.0628 63, 56, 49, 42, 35, 28, 27, 24, 18, 15,
14, 12, 9, 6

0.9375 0.0625

5 0.5 54, 48, 42, 32, 30, 28, 20, 18, 16, 8 0.9375 0.0625

9 times tables. This pattern is not dissimilar to that seen in the receptive field for unit 23.
Again it is not the case that the hidden unit receptive fields directly reflect the condi-

tional probabilities in the training set. For example, unit 22 is selective to the 2 and 3 times
table, yet this pattern is not found in the conditional probabilities analysis. Nevertheless,
it is clear that the probabilities do have a marked effect on development of the receptive
fields.

3.2 Simulations for 2�2 to 9�9

 27.50

 28.00

 28.50

 29.00

 29.50

 30.00

 30.50

 31.00

 31.50

 32.00

 2 4 6 8 3 5 7 9

 Table

 RT

 Skewed

 Equalized

Figure 3.4. Mean correct RT per multiplication table collapsed over operand
order for mean RT of 20 skewed and 20 equalized networks.

The inclusion of a ties unit is necessary to ensure that ties are among the fastest
problems. For the skew networks, the RTs of 6 out of the 8 tie problems were below the
mean RT for their table, increasing to 7 ties for the equalized networks. 6�6 remained
above the mean for the six times table.

Table 3.3 shows the error distribution for the 20 networks. This is similar to the
distribution for adults (table 2.1 on page 8), although with

4 6 8 9 10 12 14 15 16 18 20 21 24 25 27 28 30 32 35 36 40 42 45 48 49 54 56 63 64 72 81
2�2 c 25 2 17
2�3 4 c 17 31
3�2 2 c 16 31
2�4 25 c 25 3
4�2 25 c 25 6
2�5 c
5�2 c
2�6 7 c 25
6�2 14 c 25
2�7 c 3
7�2 c 5
2�8 18 7 c 9
8�2 21 11 c 17
2�9 16 c 7 2
9�2 14 c 13 1
3�3 38 17 c 13 19 24
3�4 87 c
4�3 1 93 c
3�5 29 142 11 c 27
5�3 35 134 7 c 20
3�6 51 2 9 c
6�3 49 1 5 c
3�7 5 77 45 40 c 25 9
7�3 11 77 45 35 c 25 3
3�8 75 24 c 64 14
8�3 79 24 c 62 14
3�9 5 76 c
9�3 4 76 c
4�4 35 10 c 34
4�5 5 11 c 44
5�4 2 7 c 40
4�6 1 18 22 c 147 8 5
6�

Networks Adults
Skewed Equalized

Operand errors 90.04 86.51 79.1
Close operand errors 78.98 73.75 76.8�

Frequent product errors 25.0 20.49 24.2
Table errors 9.74 13.49 13.5
Operation error 3.98 3.22 1.7�

Error frequency 14.1 18.64 7.65

�

17

 0 2 4 6 8 1 3 5 7 9

21 22 23

24 25 26

27 28 29

30 31 32

21 22 23

24 25 26

27 28 29

30 31 32

the percentage of close-operand and table errors in the cascade model.
The input encoding that McCloskey & Lindermann (1992) used for MATHNET (a

bar of 3 units) should make all these false associations with equal strength. Hence it
is surprising that only 5 per cent of MATHNET’s errors were table-errors, and more
errors were non-table errors. The output encoding for MATHNET consists of tens and
units fields, rather than products. The interaction between different input and output
encodings may complicate matters (e.g., input patterns are not attempting to activate
particular products, but are instead activating particular tens and particular units.)

 2 4 6 8 3 5 7 9

 25.20

 25.40

 25.60

 25.80

 26.00

 26.20

 26.40

 26.60

 26.80

Table

RT

Figure 3.12. RTs from simulations of 10 networks trained with equal frequencies only.

one-digit problems. Rather than make any more assumptions the 10, 11 and 12 operands
are represented in the model in the same way as the other operands.

Finally, what frequency skew should be used for the extra problems? In this simulation
the Siegler skew was used for problems 0�0 to 9�9, but a linear skew was used for 10,
11 and 12. For example, a relative frequency of 0.22 was used for 10�10, down to 0.1 for
12�12. This was produced by the arbitrary function:

frequency =

180� product

360

Ten skewed and equalized networks were trained under these assumptions. The
resultant error distribution was comparable to previous si

 0 5 10 1 2 3 4 6 8 7 9 12 11

 RT

 Equalized

 Skewed

 14

 16

 18

 20

 22

 24

 26

 28

 30

 Table

Figure 3.14. Predictions for 10, 11 and 12 times tables.

0 1 2 3 4 5 6 7 8 9

0 0 44 32 0 0 0 0 0 0 0
1 40 0 0 36 100 0 0 0 0 32
2 0 0 0 0 0 0 0 100 0 28
3 0 0 0 0 0 0 0 0 100 0
4 0 100 0 0 0 100 0 100 0 0
5 0 0 0 0 0 0 100 0 100 0
6 0 0 0 0 72 100 100 0 0 0
7 0 0 100 0 100 100 0 0 100 0
8 0 0 0 100 0 96 0 100 100 88
9 0 100 100 0 0 100 0 0 0 0

Table 3.8. Percentage error on each of the problems 0�0 to 9�9 for one
network produced with “relative” damage.

1. Adding a different random value to all weights (“absolute” damage).

2. Multiplying each weight by a different random value (“relative” damage).

56

The results from these simulations are preliminary and inconclusive. It seems possible
that deletion of just the right hidden unit can produce uniform errors for zero problems,
whilst allowing non-uniform damage on other problems. Other kinds of damage show a
correlation between the size of the problem and the number of errors made. Presumably
a mixture of damage (e.g., some unit loss and some weight reduction) will be able to
produce the behaviour seen in brain-damaged patients. However, current simulations

results. Changes in presentation frequency were not explicitly explored, and were com-
pounded with changes to the problem set brought about by the introduction of zero and
ones problems. The distribution of products was modified with the introduction of 10s,
11s and 12s problems. This brought about a change in the RT results. Future work should
look at how systematic changes to these parameters change the performance of the model.

Some of the general issues that arise from the model are discussed below. The next
section looks at the choice of output representation. Section 3.5.2 discusses the problems
posed by the zero and ones problems. Section 3.5.3 speculates as to how verification and
primed production tasks could be incorporated into the model.

3.5.1 Choice of output representation

Non-table errors are not accounted for because the outputs of the model are represented as
product nodes. This choice has a number of consequences. First, it means that a separate
read-out mechanism is required to capture non-table errors. One possible scheme would
be to add a tens layer and a units layer above the product layer in the network. The details
of this scheme have not been worked out, but one could imagine that the system would

True False

involves clamping input and output units and measuring the time required to reject or
accept the suggested product. This apparently straight-forward way to model verification
has a number of problems. First, it is necessary to only slightly activate the output layer. If
the product to be tested was presented with full activation, surely the response mechanism
should respond with that product immediately. The alternative is to delay the response
in some way, but this has not been suggested by any of the models. It is not clear why the
output layer should receive less activation from the presented problem than the inputs
do. The motivation for this assumption is not clear from the IA account, and the BSB
account does not clarify what assumptions it makes about product priming.

Figure 3.15 sketches one way in which the cascade model could be changed to capture
verification. This speculative suggestion involves adding a separate network to the
existing recall network. The verification network is presented with a product, while the
recall network is presented with the two operands as usual. The hidden layer of the recall
network forms part of the input to the verification network, and this should allow the
system to verify the presented product. Note that a shared representation is presumed

?
0
1
2
3
4
5
6
7
8
9
10
12
14
15
16
18
20
21
24
25
27
28
30
32
35
36
40
42
45
48
49
54
56
63
64
72
81

3x3

72

Throughout the chapter various ideas have been proposed as directions for future
work. Some of the quickest extensions to the model include: adding a tens and units
read out mechanism; detailing and training the verification network; testing the effect of
various parameters, such as the number of hidden units or training times. Longer term
goals include: exploring the relationship between addition and multiplication; studies
of the effect of changes to the input representation, such as logarithmic input encodings;
studies of pre-multiplication number understanding; systematic studies of network dam-

Part II

Multicolumn Arithmetic

CHAPTER 4

Symbolic Accounts of Arithmetic

Different tasks lend themselves to different styles of representation (Sloman 1985). As a
rule of thumb it makes sense to use the most appropriate technology to model the phe-
nomena of interest. An example would be to use connectionism for low-level processes
(e.g., motor control), but switch to symbolic systems for higher-level tasks, such as plan-
ning (Clark 1989). Such hybrid views of cognition are attractive (Thornton 1991, 1992a;
Rose 1991; Hendler 1989), but how do we know which technology is most appropriate
for a given task?

This chapter reviews the symbolic models that have been built to capture the way

Conditions Actions

INTO: [processmult]) readintandb();

SM: [t ?t] [b ?b] [c ?c]) do_calc();

NX: [next_top]) [processmult] shift_top_left();

WM: [result ?u] [carry ?c]) writedown(); [next_top]

CC: [no_more_top]) checkcarry(); [checkbottom] [addzero]

CB: [checkbottom]) check_bottom();

FI: [none_left]) [stop]

NB: [no_more]) endmult(); [startadd]

CO: [startadd]) readincolumn();

DA: [column ?len ?dig]) do_add();

ML: [next_left]) [startadd] moveleft();

WA: [u ?u] [c ?c]) writeadd(); [next_left]

CA: [no_more_digits]) checkadd();

AZ: [addzero]) add_zero();

Table 4.1. Production rules for correct multiplication.

around 56 per cent of the 564 grade 1–6 children in her study made systematic errors
in addition, multiplication and division. However, 10 percent were making “random
errors”, and the remaining children were error-free or just slipping. VanLehn (1981, p. 6)
also found that 10 per cent of grade 3 children’s error could not be analysed in his study
of subtraction. Still, at most 90 per cent of children’s behaviour can, in principle, be
explained by reference to a possibly faulty rule set.

4.2 Models

The formalization of the child’s rule set is discussed in this section—including rule acqui-
sition, operation and representation. Starting with the account of arithmetic developed
by Young & O’Shea (1981), I hope to show how the phenomena can be neatly modelled
by production systems. Repair theory (Brown & VanLehn 1980) appeared at about the
same time as the Young & O’Shea model, and has since gone throu

(such as [processmult], the initial goal). In working memory the partial solution is
represented by a list containing: the two digits being multiplied; the result of the current
row of multiplications; two numbers indicating which digits in the multiplicand and

To account for all the observed errors, Young & O’Shea included a number of other
faulty rules. Clearly, it would be trivial to construct a production system to account
for a particular error, and such a production system would be of no psychological use.
However, an attempt was made to constrain the productions in various ways. Young
& O’Shea’s aim was to model a particular child with a particular production system.
Different children will have different productions, and each child’s set of rules will change
over time. Given this constraint, it is still possible to build a production system “…whose
conditions were so complex, bizarre, and ad hoc that each subtraction problem was
effectively treated as a separate case…” (Young & O’Shea 1981, p. 164). This consideration
applies to all cognitive models, and it is not possible to exactly specify a set of constraints
to avoid ad hoc models. Young & O’Shea used three heuristics to guide their model
building:

1. Adopt a particular style for the rules.

2. Avoid problem-specific symbols in the rules (i.e., numbers).

3. Minimize the number of changes between rulebases.

Using these heuristics, Young & O’Shea optimized a number of production systems
to fit the errors found in their data. Starting with the correct production system for
subtraction, rules were changed to improve a score. The score is the number of errors
predicted by the system, minus the number of false errors. False errors are not errors
which have never been observed (star bugs, discussed below), but are due to the fact that
children are not fully consistent in applying faulty rules. It may be that a child exhibiting
a particular error does not make the same mistake at every opportunity. A production
system following a rule will always make the error. False errors are the mismatch between
the child’s and the system’s error performance. Initially, the correct system makes no false
errors, and predicts no bugs. Young & O’Shea mutated the rulebases and finished with
eight production sets which accounted for 160 of the children’s errors, missing 18 and
falsely predicting another 32 (1981, table 3, p. 166).

It is interesting that arithmetic skills can be captured in this way, but there is no ac-
count of where the rules (correct or otherwise) come from. The modularity of productions
means that learning can be thought of as the accumulation of rules (Young 1974; Neches,
Langley & Klahr 1987), although no such account is given. The Young & O’Shea model
provides snapshots of children at various stages of development, but does not discuss the
transition between stages (acknowledged on p. 176). There a

Learning by induction

(Problem 1) Object 1 is a subtraction problem
(Column 2) (Column 3) Objects 2 & 3 are columns
(Part 1 2) (Part 1 3) The columns are part of the problem
(First 1 3) Object 3 is the leftmost object
(Adjacent 1 2 3) The columns are adjacent
(Cell 4) (Cell 5) (Cell 6) Objects 4–5 are cells
(Digit 4) (Digit 5) Objects 4 and 5 are digits
(Blank 6) Object 6 is a blank cell

Sub1Col(C) OR

1. [And (Digit T) (Part-of T C) (First T C)

(Digit B) (Part-of B C) (Middle B C)

(Ordered C T B) (Adjacent C T B)

(Value-of TV T) (Value-of BV B) (LessThan TV BV)

-> (Borrow C)

2. [And (Digit T) (Part-of T C) (First T C)

(Digit B) (Part-of B C) (Middle B C)

(Ordered C T B) (Adjacent C TB)

(Value-of TV T) (Value-of BV B)

(Less-Than-or-Equal BV TV)

-> (Diff C)

Diff(c) AND

1. [And (Digit T) (Part-of T C) (First T C)

(Digit B) (Part-of B C) (Middle B C)

(Cell A) (Part-of A C) (Last A C)

(Ordered C T B) (Adjacent C T B) (Ordered C BA)

(Value-of TV T) (Value-of BV B)

(AbsoluteDifference TV BV AV)

-> (Write AV A)

Table 4.2. Part of the problem representation for 57�9, and part of a sub-
traction procedure, both using Sierra’s representation from (VanLehn 1990,
table 3.8 and 3.10).

The impasse-repair process

In addition to the learner, the other component of Sierra is the solver. This part of
the model applies the learned rules to specific problems. Young & O’Shea built their
rulebases in such a way as to ensure that the condition patterns would be appropriate
for all situations after conflict resolution. Building on the work of Brown & VanLehn
(1980), Sierra incorporates the notion of an impasse. For example, when no single rule is
uniquely specified, and impasse is said to have occurred, and Sierra repairs the impasse
with a number of local modifications to the solver’s state. That particular case, where
more than one rule matches, is an instance of a decision impasse, and appears to be just
another kind of conflict resolution. In fact VanLehn suggests that there are three kinds of

1

1 6 6

1 0 9
3 6 5 6 5

2 9

3 6

(a)

12 5

(b)
Figure 4.3. The bug always-borrows-left (a), where the student borrows
from the leftmost column. This behaviour is appropriate for two column
problems, such as (b).

3. Primitive, where some primitive operation cannot be carried out—e.g., a student
trying to solve 0-1, but not knowing the answer.

These three kinds of impasse are all that Sierra needs to model children’s errors in
subtraction.

When an impasse occurs, the local problem solver has to make a repair to the current
state so that Sierra can continue with the problem. VanLehn identifies three kinds of
repairs:

1. No-op, which simply skips the offending operation.

2. Barge-on, by relaxing the conditions and then applying the rule.

3. Back-up, by going back and changing a previous action.

Again, just these three kinds of repair are needed to model subtraction and other
problems (VanLehn 1990, p. 43). The “Cartesian product” of repairs and impasses (each
repair applied to each impasse) should be the repair strategies observed in the bug data.
This assumes that repair strategies are not limited to specific impasses, but are general
methods that could be applied to many different impasses. VanLehn (1990, pp. 44–54)
concludes that although there are some biases favouring particular repairs for particular
bugs, repair selection can be approximated by random choice. This suggests a criterion
for deciding whether or not to include new kinds of impasses or repairs: the new impasse
or repair, when multiplied in with the other impasses and repairs should predict plausible
bugs and no implausible bugs. Indeed, VanLehn reports (p. 53) that when impasse-repair
independence was first tested, it predicted 16 new bugs, 7 of which have been found.

As an example of the impasse-repair process, consider the subtraction bug always-
borrows-left, shown in figure 4.3a. As noted above, the skew in the curriculum means
that children are exposed to two column problems before three column problems. Given
the learner’s bias to learn the most specific patterns, it acquires the rule “borrow from the
column that is leftmost and also left-adjacent”. In the context of two column problems
this is an appropriate rule (see figure 4.3b). However, when the child encounters a three
column problem which requires borrowing for the first column, an impasse occurs: there
is no column that is both leftmost and left-adjacent. At this point a local problem solver
takes control from the interpreter and applies a repair. If the barge-on repair is used, one
of the rule’s conditions is relaxed. The bug shown in figure 4.3a results from relaxing the
“left-adjacent” requirement; relaxing “leftmost” clause results in the correct solution for
the subtraction.

77

Empirical adequacy

By the Sierra account, bug migration is the result of applying different repairs to the
same impasse. However, the local problem solver may construct a patch to the buggy
procedure. This associates the current repair with the current impasse, so that when the
impasse occurs again, the same repair will be used. In this way both bug migration and
stable bugs are accounted for.

The rule sets produced by Sierra (the predictions of the procedures that children could
learn) are tested for bugs. After each lesson, the results from the learner are passed to
the solver. VanLehn (1990, p. 28) claims that “…many bugs are caused by testing beyond

& O’Shea model did not account for learning.
Repair theory (Brown & VanLehn 1980) suggests that buggy core procedures cause

impasses which are repaired from a set of independent repair heuristics. This princi-
ple avoids Young & O’Shea’s arbitrarily hand-coded malrules, and can also account for
bug migration. In fact repair theory predicted bug migration before it was found (Van-
Lehn 1983; VanLehn 1981). Sierra theory (VanLehn 1990) developed from repair theory,
and includes a learning component. Buggy rules are induced from a skewed curriculum
and then interpreted by a problem solver which detects and repairs impasses. The con-
straints on the theory are argued for with evidence from psychology, and ensure that the
learning task is not only tractable, but also fits the bug data rather well.

The difference between core procedure bugs and impasses is t

frequency. By manipulating the training environment, networks can be made to
exhibit stages.

4. Hidden unit recruitment.

Input 26

Hidden 70

Context 7010

Output 26

10

Copy

Figure 4.4. The simple recurrent network used by Elman (1991). Each word
in the lexicon is represented as a 26 bit vector. The network learns to re-
encode the input into 10 units. A sentence is fed one word at a time to the
network.The task is to predict the next word in the sentence. At each time
step the hidden units are activated and copied back to the context layer.
Hence, the context layer acts as a memory of the network’s previous state.
As words are fed in, the hidden layer uses the current word and the context
to build up a representation of the sentence.

acterisations of children’s procedural skills, it has failed so far as an attempt to
model the process involved in development. Its focus is on describing what is
learned—the endstate of a learning process or a snapshot view—rather than
on how malrules are actually generated.

This applies to Sierra, where the learner takes a lesson and a rulebase, and returns a
number of updated rulebases that are consistent with the lesson. There is l9758(s)-166.7015(l3(r)23.0754672(e)-2.31455(d)-1.38301.92 049141(t42.963(.2975(r)270183]TJ
-5565)-8y-8.70406()-2.3101(t-2.167(e)-155)-199145.63948(o)-0.94807671-2.31455.475(s)8.(.003(ms)8.(.003(ms)3145267-2.5-13.6801 Td
[(i)6.58758(n)-3385.23(t)-2.16767(44(b)6.0534w55.44 -6.003(m)7.88506(a)-3.1903(l)6.58646(r)1..2975(l4078758((l)6.58758(e)-2.31233(s3144425(a)-3.19141(r)1.19956(a)-3.19141(r)23.0766(6(d)-351.6o)-0.946961(r)23.0766(6(d)-351.6(t)-2.16767(i)6.58758(v)-3.82569(a)-314426295(p)10.2975(u)12.2972(t)-308.451(i)6.44292(k)-384.735(t)-2.16767(o)-3385.23(.48 0 Td
[(e)6.58758(n)-8.70406(v)-3.824.108(l)6.58758(a)-3.3676(a)-5062906(e)-2.31455(t)-53 048406(t)-155.327(w2.16767(o)-3144426176(s)-21906(c)6.4429f)23.0)-229(a)-3.1903(r)23.076(t)-308.47(t)-2.16767(.)4078767(h)-8.70183(e)-2.31455((e)-2.31455(r4078758(e)-2.31455(r)-239.472(5(r4078758(8(e)-2.31455(s)8.31511(e)-286.715(t)-2.16767(o)-285.353(t)-2.1958758(m)7.88284(e)-2.3101755(n)-222958(e)-2.1]TJ
-301.92 -13.4398 Td
[3.6801 Td
(o)-0.948077(r)1.19956(k)9.0564239(u)12.2972((m)7.885(I)8.83091(t)-2.11233(t)-2.16767)-8.70295(o)-0.94585.6801 Td
[(H)0.640953(e)-2.31344.a)-506d
[(V)8770408(s)8.32127(o)-0.948077(L55(d)-1.38301.92 04917(w2.16767(296.64 -677(c)6.44292(u)1.19956(d)-198.495(i)6.58758(n)-205.619(d)-1.58013(e)-2.31455(v)-3.82347(e)-2.31455(a)-3.19141(r)1.19956(n)-8.70406d)-285.961(s)8.32127(e)-2.31455(s)-2)12.2971(r)23.0766(6(d)-367671(a)-3.197(i)6.58758(o)-0.916767(e(c)6.44069(h)-27295(p6(s)-2741(n)-8.70401(l)6.58758(e)-275.116(l)6.5875d)-1.58013(-I)8.830912(h)-8.70183(d)-3676765)-8y-8.7n)-205.619(d)-1.58013(7(r)23.0347(e)-2.31455(s)-360.978(l)]TJ
307.68 0 Td
[(e)-2.310165)-8y-8.7[(e)-2.31011(l)6.3.06,n)-8.7961(s)8.32127(t)-2.1676(t)-2.16767(e)-2741(n)s)-385.467(a)-t)-2.16767(e)-26.586112(h)-8.768(h)-8.70183(a)-3.1]TJ(e)-308.597(r)23.069(a)-3.1]TJ8(e)-2.31344(b)6.0534a)-31442455(a)-3.19141(r3q 0.3344(p)10.2975(r)23.1344(r)23.0766(e)-396.116(a)-3.19148.70183]TJ
-2968.31519(5)-0.945857(r)17.0836)-2.16767(7(r)17503(1)-3.19141((a)-3.192(n)-249.375(o)-0.948077(c)6.44292(o)-0.94292(e)-2.31235(r40787458(e)-2.314554(p)10.2998(s)8)-353002(t)-374.108(l)6.58758t(p)10.9.47(I)8.8309141(a)]TJ
310.08 0 Td7(u)12.2961(a1450.3344(p)12.313(s)8.319048(l)6.58758(r)23.0766(e)-2.3123fi)-7-8.706(v)-3.82569(a))-155.906(c)6.4429.a)802.156)9.34279]TJ1(r3q 0.425(a)-3.19141(r)1.199565(s)-360.94(p)12.313(t)-308.47t)-2.16767((s)8.31904t)-2.16767((s)8.32127l5)-8y-8.7o)-3385.23(1(l)6.58758(e)-2.3145(s)8.315903(r)23.076(t)-308.47(t))10.987(i)6.58758(o)-0o)-329.116(r5.906(c8(m)7.88284(e)(r)23.03648.70183]TJ
-296003(ms)8t)-2.16767(44(b)6.0534(r)23.0766(e)-396.116(a)-3.3.19(h)-8.70183(e)-286.733((a)-3.3.194(p)10.297m(u)12.6577(c)6.44292(u)1.19956e)-2.31344(d)-1.58013(—)-6.382741(l)6.58752((m)7.8851(l)6.58758o)-0.948077(c)6.4455(r)-239.472()-0.133822.719 0 Td
[((t)-2.16767(i)6.58758((c)6.44292(e)-2.16767(o).16666(a)-3.19141(t)-2. -63
310.08 0 Td
[(r)1.1995(a)-265.726(l)6.58758(e)-2.31455(a)-3.19141(r)1.19956(n)2.64059(o)-3.1928(o)-0.948077(n)-8.70406(.)-318.81(T)0.420626(h))-254.22o)-0.948077a)-3.19141(t(h)-8.70406(e)-15523.52)-3.19141(e)-2.314554(p)10.2998(s)823.06104(e)-2.31233(s)-166.69(n)-205.619(d)-1.166516(k)-297.223(i)6041 9
[(n)-8.70239(u.16661(“s)-166.69()-297.98151(t)-2.16764(p)10.2998((h)-271.252(t)-2.167[(e)-2.3101(k)-297.223”s)-319.85(h)-8.73.52)-s)-385.467(a)-5(r)1.19734(a)-3.ms)8t)-2.16767(h)-)-2.352(t)-2.16767(h)-8.72 -13.4398 Td
[(l)6.58758(e)-2.3134(f)4.83163(e)-2.31233(n)-8.70406“.4398 Td
6801 Td
[(o(h)-8.70239(i)6.58813(s)-363.6t)-2.16767(h)-8.70183(4(p)10.297”)-3.19141((a).70191(r)-195.702(a)-.948077(n)-2.64171((n)-8.70406(.)-318.81(.6801 Td
[(H)0.640953(e)-.166171(i)6.58758(t)-2.16767(h)293.109(t)-2.16767(r)-283.199(a)-265.726(s)8.31904(n)-8.70183(a)-3.19364(p)10.2998(s)8.31904((i)6.58758(n)-8.70406(g)-275.345(s)8.32127l5)-8 0 Td
[(r)1.1995m(u10..286(a)-3.19141(t)-2.19956(yl)-3.1914156a)-3.19141(i)6.1995(a)-265.726(l)6.58758(e)-2.3310165)-8y-8.7[(e)-2.31011()-8.70434(f)4.83163(e))23.0776e)-2.31344(d)-1.58013(—)-693.109(Y)988.707(i)6.58758(o)(c)6.4455([(e)-2.31011()--2.169(&(e)-2.3(n)-8.70656c8(m)7.88284(e)O)-0.6.195
(o)-0.94807s)-385.489(t)h)-2.16767(44(b)6.0534)-292-606(o)-0.94585.6801 T767(n)-20..3406(e)-2.31455(r)23.0013(—)-6.38274V)8770408(s)8.321585.6801 T767(L55(d)-1.38301.92 767((r)23.0013(i)6.5875877(a)-309.489(m)7.88506((d)-198.495(i)6.58758(l(c)6.44292(u)318.877(c)6.44292(u)12.2961r)23.0754672(e)-2.31455(d)-1.38301.92 0491-I)8.830916(l)6.5875(i)6.58758(v)-3.82569((i)6.58758(s)8.319048(l)6.5875845(u)12.318(m)7.88506(B(f)-170.184(u)12.2972(p)10.2975(d)-1.581.329(u)318.87&(u)18.3655(d)-286.008(b)6.05345(y)-253.488(E)-1.58013(-3.19120.99)-3.191a)-3.19141(n)-271.232(()4.83163(2)-3.19141((a).242.37((s)8.31904.)(l)6.5841a)-3.19141(4s)-319.8549)-3.19141(9)-2.16767(e)-210.92-s)-385.467(a)-n)-8.7-8.7[(e3364171(4(p)10.297-310.08 -13.6801 Td
)-8.70295(o)-0.945852((m)7.885y)1
/R9345(a)362767(et)-2.16767(h)-8.70183(e)-286.733(t)-2.16767(44(b)6.0534(r)23.0766(e)-396.116(a)-3.3.19(h)-8.7.8091(i).948077(c)6.44292(o)23.07546m(u).587008(b)6.053459(m)7.88506(9(m)7.88506(r)-348.861(i)6.59206((i)6.58758(n)-8.70406(g)-275.345)-8.70295(c)6.44292(o)23.07546(a)-3.19141(r)1.19956(n)2.639885(I)8.83091(t)-2.11455(t)-3201962(o)-285.353(1)-3.19141455(d)-1.38301.92 .2972((m)773416(l)6.5875(i)6.58758(r)-195.702(a)-.948077(n)-)10.2975(r)-1552l)6.-3.19141(e)-2.314551()-8.7067(1(l)6.58758(e)-2.3145(s)8.315903(r)23.076(t)-308.47(t))12.2972(n)-3.1916(a)-3.19141(t)-2.)-83322o)-0.9441455(s)-360.9n)-205.619(d)-1.58013(e)-2.y-8.70406()-2.310(s)8.319047(o)-329.116(r)15-6414.63948(o)-0.9(l)6.58758(o)-0.9767(h)-8.702016(t)-2.16767.n)2.63.48

By modelling with an operation available on a conventional computer there is a risk of
over- or under-estimating that operation’s importance. In the worst case the model will
incorporate highly improbable mechanisms, such as demanding a processor which is
much faster than the human information processor. Another way of looking at this is to
say that there is a danger of building “cognitive wheels”. A cognitive wheel is:

Any design proposal in cognitive theory…that is profoundly unbiological,
however wizardly and elegant it is as a bit of technology.

(Dennett 1984, p. 147)

As Clark (1985, 1986) notes, although the mind is treated as a black box system, we at
least know that it is a “naturally occurring back box”. Hence, a biological metaphor is
suggested, in which it is insisted that cognitive science “be concerned with the develop-
ment and testing of only such computational mechanisms as seem plausible in the light of
whatever biological constraints may be expected to govern emerging natural structures”
(Clark 1986, p. 47). Of course, these constraints are not detailed.

Logically there is no reason why nature could not have evolved a conventional com-
puting architecture, in which case symbolic models would capture human performance

There seems no easy way to detect “unlikely mechanisms”, and it is often only with
hindsight that specific mechanisms may be declared as begin misguided. One possi-
ble example is any mechanism requiring centralized control. Connectionist research

Reconstruct

Input

Reduced

MIN strategy. Here, the child starts with the larger of the two addends, and counts on by
the smaller addend. GIPS (general inductive problem solver) models this SUM to MIN
transition.

Briefly, GIPS uses means-end analysis, with a set of operators (e.g., to raise a finger, or
to zero a counter) which contain preconditions, add conditions and delete conditions. The
preconditions are used to set up subgoals when the operation fails. Each operator also
has a “selection concept” and an “execution concept” associated with it. The selection
concept (set of predicates) determine when an operator should be selected, and the
execution concept determines when it is actually useful to carry out the operation. The
match between these concepts and the current state are used to probabilistically select an
operator (so any of the operators could, in principle, apply

in which parts of a production systems are implemented in connectionist technology
(Touretzky & Hinton 1988; Stark 1992) there are likely to be aspects of the representation
language (the salient features) which could be exploited by the production system.

It seems that connectionism may be well suited to capturing developmental phenom-
ena in general. For arithmetic in particular, it could be that some of the assumptions
made by VanLehn (1990) and Young & O’Shea (1981) may be changed when viewed
from a connectionist perspective. This is not to suggest that connectionism necessarily
offers a “better” account of cognition, or that production system models can be ignored.
Rather, there is some promise in looking at arithmetic from a different—in this case,
connectionist—point of view. The “true” story is much more likely to be hybrid than

There are bugs and slips. Run time slips, such as 3�4=8, were considered in part I. Here
the focus is on procedural misconceptions, where mistakes are not due to “faulty recall”,
but result from mislearning. To isolate the procedural aspects of arithmetic, much of
the processing involved in solving a problem is done outside the network. External
activities include keeping track of the current focus of attention, computing products,
and keeping running totals. Training a network to output the right steps in a procedure

"Done"

"Write number"

"Next column"

Hidden

Predicates Context

ALU

x

Tens Units

"Multiply"

y

Copy

Figure 5.2.

4

4 2

2

Answer
pointer

Lower
pointer

Upper
pointer

Figure 5.5. Problem representation

Movement Registers

top_next_column (TNC) store_mark (STR)

jump_answer_space (JAS) zero_accumulator (ZAC)

jump_top_row (JTR) next_answer_row (NAR)

left (LFT) next_bottom_column (NBC)

right (RHT) inc_answer_column (IAC)

up (UP_) inc_top_column (ITC)

down (DWN) add_start_position (SAD)

read_carry (RDC) start_multiplication (SMU)

Writing Others

write_units (UNI) add_mark_to_accumulator (ADD)

write_tens (TEN) compute_product (MUL)

mark_zero (MKZ) draw_rule (RUL)

mark_carry (MKC) done (DON)

Table 5.1. Actions that the network can perform (and abbreviations used in
some figures).

top row, but without having to store actual coordinates. Positioning errors can occur,
though, if the network does not increment or reset the counters at the appropriate time.

Twenty-four output actions can be performed (table 5.1). For each operation there is
an associated output unit in the network (a 1-of-24 encoding). This set of operations is
adequate for multiplication and addition, and was used in all the experiments described
below. Variations in the operations, and the effects this has on the model, is a topic for
future investigation.

The top-row, bottom-row and answer registers have increment operations and reset
operations. There is also the notion of a “current focus”: after the network has focused
on a digit in the top row, for example, it can move relative to that position (up, down, left
or right), or read the carry mark if there is one in that cell. All these registers are reset to
appropriate starting positions when the network activates either theadd_start_position
or start_multiplication units at the start of a problem.

As the focus of attention moves around the problem, the contents of the current cell
is read (cf. Suppes et al.’s SS register). The contents may be stored in another register
(NSS) and used in computations. When addition or multiplication is called for, the
calculation uses the current digit in focus and the last stored digit, and places the result
in an accumulator—or adds the result to the accumulator in the case of addition. The
accumulator’s contents is accessed, mostly to write down a digit, by the tens column or
the units field. A special operation (mark_carry) writes the tens part of the accumulator

0 1 0 0 0 1 1 0 1

Addition? Carry

Multiplication?

needed?

Blank?

Line?

Digit? Lower

Upper
left-most?

left-most?

Right-most?

Figure 5.6. Input representation.

A number of output actions involve “jumping” the focus of attention to certain points
in the problem, such as the top of the column. There are other possibilities: for example,
rather than allowing a top_next_column action, there could be a loop of actions moving
the focus of attention up the page until it reached the top of the column. This would
result in less output actions, but much longer training sequences. Indeed, it is possible to
navigate around a multiplication column with only one register, an accumulator, and the
ability to move up, down, left or right. But not only would the sequences be very long,
this model also runs against introspective accounts of how one solves a multiplication
problem. Exactly how people navigate maths problems is an interesting and open topic
which requires further empirical research.

The input to the network is a vector of 7 bits encoding informa

Task Cell Output Comments

� start_multiplication Look at ‘3’
� Number store_mark Remember the ‘3’
� Number jump_top_row Move to the ‘2’
� Number compute_product Multiply digits
� Number jump_answer Move down
�

 0.00

 0.50

 1.00

 1.50

 2.00

 2.50

 3.00

 3.50

 4.00

 4.50

 5.00

 10.00 20.00 0.00

This is a surprising result from embedding addition within multiplication, and is
explained in section 5.4. Another interesting and plausible bug comes from testing the
network on a problem it has never seen before:

1 1 1

� 1 1

Bug type +1 +2 +3

Correct 24.00 16.67 14.29
Observed 36.00 35.42 37.14
Unobserved 40.00 47.92 48.57

Totals 100.00 100.00 100.00

Star 32.00 31.25 32.86
Plausible 8.00 10.42 7.14
Combination 0.00 6.25 8.57

Table 5.4. Classification of the behaviour of the model when tested on unseen
problems. Column 1 percentages are from 25 problems, column 2 from 48
problems, and column 3 from 70 problems. The unobserved bugs are broken
down into star, plausible and combination bugs.

Correct behaviour

The networks generalized correctly on a total of 10 problems. Examples include: the
network trained on 1+1 correctly solved 1+1+1; after learning 11+1, 100+100 was solved;
1�1 generalized to 2�5; once 12�59 was learned, the network correctly solved 12�90.

Star bugs

A total of 23 star bugs were found, indicating that there needs to be some additional
constraints on the model. Four of the 23 bugs result from allowing the network to write
anywhere on the page, including the initial problem, and rule-marks. Endless looping
accounts for 5 of 23 bugs. In 3 cases the answer was not recorded—a serious star bug, as
subjects usually write something.

The majority of star bugs (11) were due to the network repeating a large operation,
such as repeating the addition sequence after adding a parti

Plausible combinations

I classified four behaviours as combinations of bugs of which at least one was unob-

Bug name Rank +1 +2 +3

ignores-10s-column 10 22.22 23.53 19.23
does-not-carry-ones 1 0.00 5.88 11.54
does-not-record-100s 16 22.22 11.76 7.69
does-not-raise-carry 9 11.11 5.88 3.85

0 undef
16 ZAC

15 SAD

14 ADD

13 DWN

12 ADD

11 DWN

10 ADD

1+1+1

1+1+1+1

1+1+1+1+1

PC 2 x 10-3

PC 0
20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

220.00

240.00

260.00

280.00

0.20 0.40 0.60 0.80 1.00 1.20 1.40

PCA for 303a-16

11+11

11x1

11x11

PC 1

PC 0

-1.40

-1.20

-1.00

-0.80

-0.60

-0.40

-0.20

-0.00

0.20

PCA for 303a-6

11+11

100+100

PC 1

PC 0
-1.20

-1.00

-0.80

-0.60

-0.40

-0.20

-0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

-0.50 0.00 0.50 1.00 1.50 2.00

ZAC-1

SAD-2
ADD-3

DWN-4
ADD-5

DWN-6

DWN-7

UNI-8

ZAC-9

TNC-10

ADD-11

DWN-12

ADD-13

DWN-14

DWN-15

RDC-16

UNI-17

DON-18

ZAC-1

SAD-2
ADD-3

DWN-4
ADD-5

DWN-6

DWN-7

UNI-8

ZAC-9

TNC-10

ADD-11

DWN-12

ADD-13

DWN-14

DWN-15

UNI6115352.1513658.09 5438. m
2405.91 c
290 10 18131.91 45226.70 18131.l1 45226.70 168 44

DWN-7

DWN-15

units to solve the problem there is no reason to believe that two dimensions are going
to be adequate to understand the system. However, the usefulness of the method is an
empirical matter, and it seems that there is an interesting story that can be told about the

short periods of time. The phenomenon, called bug migration, can be captured by the
network in two ways: by adding noise during processing; or as a result of the slow
changes to the weights.

5.5.1 Bug migration as noise

Processing trajectories can be perturbed by adding noise to the activations of processing
units. There are many ways to do this. The results presented in this section are based
on adding noise to each connection, with the noise proportional to the magnitude of the
weight. Specifically, the net input to a non-input unit was changed to:

net

i

=

X

j

(a

j

w

ij

+ h(

w

ij

30

))

where h(n) returns a random number between �n. There was no particular reason for
using this method, and I suspect that other ways of adding noise would produce similar
results. The particular value of a thirtieth of the weight was selected by trial and error so
that the networks would produce a variety of behaviours, but still be able to produce the
behaviour they would if noise was not present.

Testing a network with this modified net input function produces a number of different
behaviours for the same problem. Hence, testing was as follows. The 27 networks used
in the experiments of section 5.3 were presented with the next unseen problem in the
curriculum. This same problem was presented 20 times in order to record the distribution
of behaviours.

Fifteen networks exhibited no variety in their behaviour, and just produced the be-
haviour that they would without noise. Five networks produced 2 or 3 behaviours. The
remaining 7 networks produced: 7, 8, 9, 12, 13, 15, and 17 behaviours.

The network that produced 7 behaviours was trained on 11�1 and tested on 111�1.
The behaviour without noise for this network was to process the first two columns
correctly, and then write the product of the third column (1) in the problem, producing:

1 1 1

� 1 1

1 1

This behaviour was also produced on 11 out of 20 of the runs with noise. The network
entered into a infinite loop on 2 runs, and produced the following 2 behaviours on another
2 occasions:

1 1 1

� 1

1 1 1

1 1 1

� 1

1 1

Notice that the first of these behaviours is the correct answer. Finally, 3 behaviours
occurred only once in the 20 runs:

1 1 1

� 1 1

1 1 1

1 1 1

� 1

2 1

1 1 1

� 1

2 1 1

2

The majority of these behaviours constitute star bugs, but this is not surprising given
that the system as a whole produces a large number of star bugs. Allowing noise into the

116

Training time

E

D

C

B

A

Figure 5.14. Representation of the amount of time in epochs that five be-
haviours persisted. See text for explanation.

2. Characterized by pauses or negative comments, such as “I don’t know what to do”.

3. Possibly the point at which learning takes place (VanLehn 1988, 1991a).

By this definition the connectionist model does not have impasses. However, the

be inconsequential. In any event the fact that impasse behaviour is observed requires an
explanation. Their importance is an empirical matter.

5.7 Summary

This chapter has shown that a connectionist system can “generate the kind of extended,
sequential problem-solving behaviour that characterizes students solving subtraction
problems”. This was the original aim. There was clearly little hope that the model would
match the empirical findings as well as Sierra does. Sierra, after all, grew out of more
than ten years of research on the impasse-repair process.

Production system models are sucessful in this domain because arithmetic is a proce-
dural skill. Despite initial assumptions about what connectionist networks can or cannot
represent well, it seems that there is a great deal of structure in the hidden layer acti-
vations. It also seems, from the analysis presented above, that the representations are
organized into subskills that can be utilized by the model. This property suggests that
the model is capable of interesting sequential behaviour, and it also changes the way
arithmetic problem solving is conceptualized.

It turns out, for example, that it is possible to model buggy behaviour without an
explicit impasse and repair process. The repairs carried out by the network, if they can be
called repairs, are just a product of the dynamics of the system. When a new situation is
met the solution path depends not on a handful of general purpose heuristics, but on the
statistical distribution of paths that have previously been followed.

Noise can be introduced to the system to vary behaviour. A more interesting possi-
bility comes from the idea that the processor (child or network) should not be considered
as a static entity. Although this conceptualization is encouraged by symbolic (snapshot)
models, it may be more profitable to think of the system as being constantly in flux.
Connectionist models promote this view.

Once the idea of a continuously changing, similarity-based system is taken seriously,
the purpose of an explict repair mechanism has to be questioned. This thought was the
basis of the model described in this chapter.

Having demonstrated that the networks show increases in error at moments that

that a network can represent procedural information in an interesting way, it remains to
be shown that the system could fit the data. An example of a possible change would be
to break down the mark_carry operation into smaller operations. Without this it is not
possible to model bugs like does-not-rename-sum. There are many possible representa-
tion schemes, and a huge number of potential operations; exploring the possibilities will

CHAPTER 6

Summary

There were two main aims in writing this thesis:

1. To build an explicitly specified model of adult memory for multiplication facts.

2. To demonstrate an alternative view of children’s multicolumn arithmetic, and show
that such an approach is useful.

6.1 Memory for arithmetic facts

Chapter 2 contains a review of the literature and previous mo

Bibliography

Ainsworth, S. (1991). A model of children’s multiplication skills. Unpublished project,
Portsmouth Polytechnic, UK.

Allen, R. B. (1988). Connectionist state machines. Technical report ARA 88-300, Bellcore,
Morristown, NJ.

Allen, R. B. (1990). Connectionist language users. Connection Science, 2(4), 279–311.

Anderson, J. A., Rossen, M. L., Viscuso, S. R. & Sereno, M. E. (1990). Experiments with
representation in neural networks: object motion, speech, and arithmetic (Including
introduction by Anderson). In Anderson, J. A., Pellionisz, A. & Rosenfeld, E.,

Attisha, M. G. (1983). A microcomputer based tutoring system for self-improving and
teaching techniques in arithmetic skills. Master’s thesis, Faculty of Science, Univer-
sity of Exeter.

Attisha, M. G. & Yazdani, M. (1984). An expert system for diagnosing children’s multi-
plication errors. Instructional Science, 13, 79–92.

Bates, E. A. & Elman, J. L. (1992). Connectionism and the study of change. Technical
report CRL 9202, Center for Research in Language, University of California, San
Diego, La Jolla, CA. To appear in M. Johnson (Ed.) Brain Development and Cognition:
A Reader. Oxford: Blackwell Publishers.

Boden, M. A. (1988). Computer Models of Mind. Cambridge University Press, Cambridge,
UK.

Brown, J. S. & Burton, R. R. (1978). Diagnostic models for procedural bugs in basic
mathematical skills. Cognitive Science, 2, 155–192.

Brown, J. S. & VanLehn, K. (1980). Repair theory: a generative theory of bugs in procedural
knowledge. Cognitive Science, 4, 379–426.

Burton, R. R. (1982). Diagnosing bugs in a simple procedural skill. In Sleeman, D. H. &
Brown, J. S., eds, Intelligent Tutoring Systems, pp. 157–183. Academic Press, London.

Buswell, G. T. (1926). Diagnostic Studies in Arithmetic. University of Chicago Press,
Chicago, IL.

Campbell, J. I. D. (1987). The role of associative interference in learning and retrieving
arithmetic facts. In Sloboda, J. A. & Rogers, D., eds, Cognitive Processes in Mathematics,
pp. 107–122. Clarendon Press, Oxford.

Campbell, J. I. D. & Graham, D. J. (1985). Mental multiplication skill: structure, process,
and acquisition. Canadian Journal of Psychology, 39(2), 338–366.

Chalmers, D. J. (1990). Syntactic transformations of distributed representations. Technical
report, Indiana University. To appear in Connection Science, volume 2.

Churchland, P. S. & Sejnowski, T. J. (1989). Neural representation and neural computation.
In Nadel, L., Copper, L. A., Culicover, P. & Harnish, R. M., eds, Neural Connections,
Mental Computation, chapter 1, pp. 15–48. MIT Press, Cambridge, MA.

Clark, A. (1985). Artificial intelligence and the biological factor. Technical report CSRP
49, School of Cognitive and Computing Sciences, University of Sussex, Brighton,
UK.

Clark, A. (1986). A biological metaphor. Mind & Language, 1(1), 45–63.

Clark, A. (1987a). Connectionism and cognitive science. In Hallam, J. & Mellish, C., eds,
Advances in Artificial Intelligence, pp. 3–15. John Wiley and Sons, Chichester.

Clark, A. (1987b). The kludge in the machine. Mind & Language, 2(4), 277–300.

Clark, A. (1989). Microcognition: Philosophy, Cognitive Science, and Parallel Distributed
Processing. MIT Press, Cambridge, MA.

127

Clark, A. (1993).

Jones, R. M. & VanLehn, K. (1993). Acquisition of children’s addition strategies: A model
of impasse-free, knowledge-level learning. Draft Manuscript.

Jordan, M. (1986). Attractor dynamics and parallelism in a connectionist sequential
machine. In Proceedings of the Eight Annual Conference of the Cognitive Science Society,
pp. 531–545.

Kirsh, D. (1990). When is information explicitly represented? In Hanson, P., ed, Informa-
tion, Thought and Content. UBC Press.

Klahr, D. (1992). Information-processing approaches. In V

Pollack, J. B. (1989a). Implications of recursive distributed representations. In Touretzkey,
D. S., ed, Advances in Neural Information Processing Systems, Vol. 1. Morgan Kaufmann
Publishers, San Mateo, CA.

Pollack, J. B. (1989b). Recursive distributed representations. Technical report, Ohio State
University. Published in Artificial Intelligence, 46(1–2):77–106.

Pylyshyn, Z. W. (1984). Computation and Cognition: Towards a Foundation for Cognitive
Science. MIT Press, Cambridge, MA.

Ratcliff, R. (1990). Connectionist models of recognition memory: constraints imposed by
learning and forgetting functions. Psychological Review, 97(2), 285–308.

Resnick, L. B. & Ford, W. W. (1982). The Psychology of Mathematics for Instruction. Lawrence
Erlbaum Associates, Hillsdale, NJ.

Rickard, T. C., Mozer, M. C. & Bourne, Jr., L. E. (1992). An interactive activation model
of arithmetic fact retrieval. Technical report 92-15, Institute of Cognitive Science,
University of Colorado, Boulder, CO.

Rose, D. E. (1991). Appropriate uses of hybrid systems. In Touretzky, D. S., Elman, J. L.,
Sejnowski, T. & Hinton, G., eds, Proceedings of the 1990 Connectionist Models Summer
School, pp. 265–276. Morgan Kaufmann Publishers, San Mateo, CA.

Servan-Schreiber, D., Cleeremans, A. & McClelland, J. L. (1991). Graded state machines:
the representation of temporal contingencies in simple recurrent networks. Machine
Learning, 7, 161–193.

Shultz, T. R. (1991). Simulating stages of human cognitive development with connectionist
models. In Birnbaum, L. & Collins, G., eds, Machine Learning: Proceedings of the Eighth
International Workshop, pp. 105–109. Morgan Kaufmann Publishers, San Mateo, CA.

Shultz, T. R. & Schmidt, W. C. (1991). A cascade-correlation model of balance scale
phenomena. In Proceedings of the Thirteenth Annual Conference of the Cognitive Science
Society, pp. 635–640. Lawrence Erlbaum Associates, Hillsdale, NJ.

Siegler, R. S. (1987). Strategy choices in subtraction. In Sloboda, J. A. & Rogers, D., eds,
Cognitive Processes in Mathematics, pp. 81–106. Clarendon Press, Oxford.

Siegler, R. S. (1988). Strategy choice procedures and the development of multiplication
skill. Journal of Experimental Psychology: General, 117(3), 258–275.

Siegler, R. S. & Shrager, J. (1984). Strategy choices in addition and subtraction: how
do children know what to do? In Sophian, C., ed, Origins of Cognitive Skills: The
Eighteenth Annual Carnegie Symposium of Cognition, pp. 229–293. Lawrence Erlbaum
Associates, Hillsdale, NJ.

Sleeman, D. H. (1982). Assessing aspects of competence in basic algebra. In Sleeman,
D. H. & Brown, J. S., eds, Intelligent Tutoring Systems, chapter 9. Academic Press,
London.

Sloman, A. (1985). Why we need many knowledge representation formalisms. Technical
report CSRP 52, School of Cognitive and Computing Sciences, University of Sussex,
Brighton, UK.

Suppes, P., Cohen, M., Laddaga, R., Anliker, J. & Floyd, R. (1983). A procedural theory of
eye movements in doing arithmetic. Journal of Mathematical Psychology, 27, 341–369.

APPENDIX A

Addition Multiplication
Renaming 23 Concept 19

the authors mentioned in the previous section. If that author gave frequency information,
it is shown as a percentage of all the bugs taken from that author. Note that this will not be
a percentage of all the bugs listed by that author: bugs were not included either because
they were not clearly described, or because they were not relevant (e.g., number fact
errors). For addition, 116 bug occurrences were used from Cox, and 484 from Buswell.
A total of 113 occurrences of multiplication bugs were used from Cox, 512 from Buswell,
and 76 from Ainsworth.

The catalogue is listed in alphabetical order, but table A.2 (on page 144) lists the most
frequent bugs in order of frequency—or an approximation to that given that many bugs
have frequency values from two or three authors.

Some of the bugs listed produce results that look identical to other bugs. For example,
the bugs does-not-rename-sum and does-not-rename-product both result in the subject
writing carry digits in the answer row. However, these bugs qualify as separate bugs
because they have been observed independently of each other. That is, a subject can fail
to rename a partial product, yet correctly rename when adding the partial product.

The Buswell frequencies are based on the total frequencies made by 263 subjects,
spread over grades 3 to 6 (1926, tables XXXV to XXXVII, pp. 136–139). From the Ainsworth
study, the frequencies are summed over two sets of 10–11 year olds and one group of 8-9
year olds (Ainsworth 1991, table 2, p. 32).

The model described in chapter 5 does not attempt to model certain kinds of errors,
and for this reason some space-saving liberties have been taken in these appendices. In
particular, pattern errors, like N�0=N, are only given one way round (i.e., 0�N=N is not
shown). In the Cox, Ainsworth and Buswell studies, they are given both ways as they
can occur independently.

Addition bugs

Added-imaginary-column. The subject went on to write an answer for a column that did
not exist.

(e.g., 3+6=9, 3+4=7).

4 6

+ 3

7 9

Cox 3.45%

Carries-one-to-100s. One is carried into the hundreds column regardless of whether a
carry is or is not needed.

5 0 5

+ 7 4

6

1

7 9

Cox 0.86%

Carries-one-to-10s. One is carried into the tens column when it is not necessary.

4 6

+ 3

5

1

9

Cox 1.72%

Carries-ten. Ten is carried rather than one. I.e., 7+5=12, 2+1+10=13.

2 5

+ 1 7

1 3 2

Attisha

Carries-two. The subject carries two in every column.

2 7 1

+ 4 1 2

8

2

0r8.70406(e)-5

Column-skipped. One column is ignored and the column’s answer is left blank.

3 7 5

+ 2 1 2

5 7

Does-not-raise-carry. The final carry at the end of an answer row is not raised onto the
answer row.

7 8

+ 7 1

1

4 9

Buswell 7.02%

Does-not-record-100s. The hundreds column answer is not recorded on the answer row.

5 0 5

+ 7 4

0 7 9

4 7 6

+ 1 7

9

1

3

Cox 1.72%

Does-not-rename-copy-100s. The sum of the first column is not renamed,the tens column
is not processed, and the digit in the hundreds column is copied to the answer row.

2 0 5

+ 8 6

2 1 1

Cox 0.86%

Does-not-rename-quits-100s. The carry digit from the first addition is written in the
answer row but the hundreds column is not processed.

2 0 5

+ 8 6

8 1 1

Cox 1.72%

Does-not-rename-sum. During addition, digits to be carried are written on the answer
row.

4 8

+ 3

4 1 1

2 8

� 1 7

1

1

9

5

6

+ 2 8 0

3 1 7 6

Cox 18.97%
Buswell 3.1%
Attisha

Ignores-10s-column. The tens column is ignored.

4 8

+ 3

1 1

Cox 0.86%

Ignores-first-column. The first column of the problem is ignored.

3 2 5

+ 2 7 1

5 9

Attisha

Left-alignment. The subject writes the problem aligned against the left column.

5 4

+ 3

8 4

Attisha

141

Addition Multiplication
Rank Bug B C Bug A B C
1 does-not-carry-ones 35.34 N�0=N 21.05 23.44 12.39
2 does-not-carry 26.03 1.72 answer-on-one-row 27.63
3

APPENDIX B

Multiplication Bugs

0�N=0-carry-N. When multiplying by zero, zero is written as the column’s answer, but
the multiplicand is carried.

2 0

� 3

9

3

0

Ainsworth 2.63%

Adds-carry-and-multiplicand. The carried digit is added to the multiplicand, and this
sum is given as the column answer. E.g., 6�8=48, 3+4=7. The final “5” was copied.

5 3 6

� 8

5 7

4

8

Attisha

Adds-carry-and-multiplier. The carried digit is added to the multiplier, and this sum is
given as the column answer. I.e., 4�5=20, 4+2=6, 4�8=32.

8 0 5

� 4

3 2 6

2

0

Cox 8.85%

Adds-carry-and-multiplier-when-zero. When the multiplicand is a zero, the subject adds
the carry digit and the multiplier to obtain an answer. In the example, 2�7=14, 1+2=3,
2�5=10.

5 0 7

� 2

1 0 3

1

4

Cox 0.88%

Adds-carry-to-multiplicands. A column’s answer is the sum of the carry digit and the
multiplicand. E.g., 6�8=48, 3+4=7, 5+4=9.

5 3 6

� 8

9 7

4

8

Attisha

145

Adds-carry-to-product. When the result of a multiplication is a two digit number, those
numbers are added, e.g., 3�5=15=6.

5 2

� 1 3

6 6

+ 5 2 0

5 8 6

Ainsworth 1.32%

Adds-instead-of-multiplying. The addition algorithm is used instead of multiplication.

7 2 5

� 3

7 2 8

Cox 2.65%
Attisha

Adds-multiplicand-to-answer. A multiplicand is not multiplied, but instead is added to
the answer. I.e., 3�6=18, 7+1=8.

7 6

� 3

8

1

8

Buswell 5.47%

Adds-using-multiplication-pattern. The subject uses the pattern for multiplication, but
adds the digits.

3 2 0

� 4

7 6 4

Cox 1.77%
Attisha

Always-carries. The subject always adds in the carry digit.

2 4 2 9

2

5 9 5

1

8

Buswell 0.2%
Attisha

Always-carries-one. When a carry occurs, the subject adds one to a column answer, not
the real carry.

5 1 4

� 7

3 5 8

2

8

Attisha

Answer-on-one-row. All the partial products are written on one answer row.

2 3

� 4 8

9

1

3

1

8

2

4

Ainsworth 27.63%

Answers-left-to-right. The subject writes the answer left to right. In the example, 2�9=18,
subject writes 8 carries 1, and so on.

7 1 211

2

8

Carries-wrong-digit. When the result of a multiplication or addition is a number that
needs to be carried, the wrong digit is carried.

7 2 4

� 6

4 8

6

1

4

2

Ainsworth 3.95%
Buswell 1.76%
Cox 0.88%
Attisha

Carries-wrong-number. A composite bug, where some number was carried, but it was
the wrong one (e.g., the units number as in carries-wrong-digit, or always a one, as in
always-carries-one).

Buswell 18.55%

Carry-added-to-multiplicand. The carry digit is added to the multiplicand before mul-
tiplying. I.e., 6�7=42, (2+4)�6=36, (3+3)�6=36.

3 2 7

� 6

3 6

3

6

4

2

Cox 7.96%
Buswell 0.78%
Attisha

Carry-added-to-tens. When adding a carry digit to a product, the carry is added to the
tens part, e.g., 4�6=24, 4�2=8, 2+8=28.

2 6

� 1 4

2 8

2

4

+ 2 6 0

5

1

4 4

Ainsworth 1.32%

Carry-not-raised. The carry digit is not raised at the end of a answer row in the partial
product.

4 2

� 4 1

4 2

+

1

6 8 0

7

1

2 2

Ainsworth 1.32%

Carry-once-always-carry. Once the subject starts to carry a digit, it is always carried.

1 1 2

� 7

8

1

8

1

4

Cox 0.88%

Copies-after-first-column. The first column of a problem is solved correctly, but the

Copies-multiplicand. No multiplication is performed, but the multiplicand is copied to
the answer row.

2 0 0

� 4

2 0 0

Does-not-carry-in-partial-product. The subject does not carry when adding the partial
product.

9 2 7

� 7 3

2 7 8 1

6 4 8 9 0

6 6 5 7 1

Attisha

Does-not-carry-to-10s. The carried digit is not added to the product in the tens column.

2 1 6

� 6

1 2 6

3

6

Ainsworth 3.95%

Incorrect-number-of-annex-zeros. An incorrect number of zeros are inserted into one of
the answer rows.

4 5 6

� 2 5 1

4 5 6

2 2 8 0 0

9 1 2 0 0

Cox 6.19%

Last-digits-multiplied. The last multiplicand is multiplied by the last multiplier, rather
than multiply each multiplier by each multiplicand. In the example, 2�7=14, 2�0=0+1=1,
then 5�3=15.

5 0 7

� 3 2

1 5 1

1

4

Cox 1.77%

Last-multiplication-skipped. The second multiplicand is not multiplied by the second
multiplier.

3 2

� 4 1

3 2

+ 8 0

1 1 2

Ainsworth 1.32%

Multiplied-product-by-carry. The carry digit is multiplied by the product, rather than

Multiplies-last-multiplicand-and-writes-10. The only multiplication performed is to
multiply the multiplier by the last multiplicand (3�6 in the example). The product is
written in the answer row, and ten is written after it.

3 0

� 6

1 0 1 8

Cox 0.88%

Multiplies-multiplicands. The first multiplication is correct, but the subject then multi-
plies the multiplicands. In this example, 1�4=4, 2�4=8.

2 4

� 3 1

8 4

Ainsworth 1.32%

Multiplies-partial-product. The partial product is multiplied, not added, with the bug
multiplies-using-addition-pattern.

3 2

� 2 1

3 2

6 4 0

7

1

2 0

Ainsworth 2.63%

Multiplies-using-addition-pattern. Uses the addition pattern, but multiplies.

5 2 4

� 7 3 1

3 5 6 4

Ainsworth 11.84%

2�4=8+2=10, 2�1=2+1=3. In the second example, the second and third products are
written on the same answer row.

1 4 4

2 5

3

1

0

2

0

5 1 2

� 2 5

5 1 2

Skips-zero-multiplicand. When the multiplicand contains a zero, the multiplication is
skipped and the reminding digits of the multiplicand are multiplied by the multiplier
directly under the zero. In the example, 2�9=18, 8�5=40.

8 0 9

� 5 2

4 0 1 8

Attisha

Spurious-zero-in-100s. A zero is inserted in the hundreds column for no apparent reason.

9 0 5

� 4 6

5 4 0 3 0

3 6 0 2 0

Cox 0.88%

Subtracts-partial-product. The subject subtracts the partial product rather than adding.
In this example the subject also subtracts the smaller number from the larger.

5 3

� 7 4

2 1 2

3 7 1 0

3 5 0 2

Cox 0.88%
Attisha

Too-many-annex-zeros.

