
Evolving Fault Tolerant Systems

�

CSRP 385

Adrian Thompson

School of Cognitive and Computing Sciences, University of Sussex,

Brighton BN1 9QH, UK. E-mail: adrianth@cogs.susx.ac.uk

Abstract

The conventional mechanism used to gain

fault tolerance is redundancy. In contrast,

this paper suggests that arti�cial evolution

can be used to produce systems that are in-

herently insensitive to faults, with fault tol-

erance becoming part of the task speci�ca-

tion. The possible techniques are investi-

gated, and the study is grounded in a real-

world evolved electronic control system for

a robot.



1 1 16101

Motors

MM
Clock

Evolved

1k by 8 bits RAM

Evolved RAM Contents

G.L.

G.L.

10 Address inputs 8 Data outputs

Sonars

Figure 1: The evolvable DSM.

ble (present-state, input) combination. The

clocked state-register that would normally

hold the present state has been replaced by a

\Genetic Latch" (G.L.), which behaves like

the state register except that which of the

variables are latched according to the clock,

and which are passed straight through asyn-

chronously is under genetic control. Ge-

netic latches also control whether any of the

inputs or outputs are clocked. All of the

latches run from a common clock, but its

frequency is under genetic control, as is the

contents of the RAM.

The temporal freedom available in this

arrangement means that the evolved DSM

robot controller is able to accept directly

the echo pulses from a pair of time-of-
ight

sonars mounted on the robot facing left and

right, and to generate the pulse trains



acids, Eigen [6] de�nes a \quasi-species" as



ulation of 1000, a bitwise mutation probabil-

ity of 0.005, and no elitism) was applied to a

random N=20, K=10 landscape.

1

After 100



notypic e�ect as a genetic mutation. What

about faults and encoding schemes where

that is not so? What if greater tolerance

to faults is required than can be obtained

in that way? Then the evolving system

needs to be deliberately subjected to the

faults of interest during its �tness evalua-

tions, so that tolerance to them is an ex-

plicit part of the task to be performed

4

: the

phenotype must operate in an environment

of faults. The exposure to faults can most

easily be done in a software simulation, but

some fault emulation is also possible in an

evolvable hardware architecture | the abil-

ity to introduce SSA faults into the DSM's

RAM is an example (see previous section).

A problem with the \environment of

faults" method arises when only a small

proportion of the possible faults of interest

have a serious e�ect on the system, but it

is not known beforehand which those will

be: it depends on how the system happens

to evolve. If, when assessing the �tness of

an individual, it is not subjected to all of

the faults during its evaluation, but rather

to a random selection of them, then it will

often be those individuals which are lucky

enough not encounter any crucial faults that

score best, instead of those which are actu-

ally better. Such very noisy �tness evalua-

tions reduce the e�cacy of the evolutionary

process. For all but the smallest systems, it

is prohibitively time-consuming to test each

individual in the presence of every possible

fault, so some way of adaptively choosing

those faults likely to disrupt the evolving

system is required.

Hillis [8] faced a directly analogous prob-

lem in generating test cases for the eval-

uation of evolved sorting networks. They

quickly evolved to sort all but a few test

cases correctly, but it could not be deter-

mined a priori which would be the \prob-

lem" tests. Hillis' solution was to co-evolve

test cases along with the sorting networks:

the networks were scored according to how

well they sorted the test cases, and the

test cases by how well they found 
aws in

the sorters. The continuous and automatic

adaptation of test cases by co-evolution

was found to be superior to simply vary-

ing the test cases over time or over the two-

dimensional grid upon which the population

was spatially distributed.

4

There is also the possibility that the Baldwin ef-

fect could occur, aiding the evolutionary process[7].

Hillis' result strongly suggests that the

use of a co-evolving population of faults may

be a way to subject individuals to faults dur-

ing their evaluations, but without wasting

time on faults to which they are already ro-

bust. It may then be possible to evolve toler-

ance to all of a large set of faults of interest,

because the co-evolving faults would soon

adapt to thwart a group of individuals that

could be seriously a�ected by any subset of

them. There is a danger that the co-evolving

populations will become trapped in a cycle,

without making useful progress: more em-

pirical investigation into the applicability of

this approach is needed.

3.3 By Exploiting Resources

If a particular defect persists for an extended

period of time while the system is evolving,

then the behaviour of the faulty part be-

comes just another component to be used:

the evolutionary algorithm does not \know"

that the part is supposed to do something

else. For example, one of the SSA faults

(the one marked with an arrow in Figure 3)

was introduced as a permanent feature in

the DSM, and the evolved controller was al-

lowed to evolve some more. At �rst, the

�tness of the population was dramatically

lowered, with none of the individuals per-

forming as well as the best of the population

used to, but after 10 generations the mean

and best �tnesses of the population had re-

covered to their previous values. In this

case, the faulty part was tolerated rather

than used , but in general this need not be

so. This mode of fault tolerance may prove

useful when transferring an evolved system

between pieces of hardware having di�er-

ent defects, or to cope with slowly changing

faults in the same hardware.

3.4 By Redundancy

This paper has concentrated on how the

nature of the evolutionary process may be

used to produce designs that are inherently

fault-tolerant. However, the work reported

in [9, 10, 11] shows that the more tradi-

tional fault tolerance technique of redun-

dancy (the use of spares when faults are

identi�ed) may be integrated into an evo-

lutionary framework. A special architec-

ture for a �eld-programmable gate array

integrated-circuit is presented, which sup-



ports the \embryological" development of a

circuit speci�ed by a genome (which could

be evolved). During this development, and

even during run-time, if some of the self-

testing cells of the array are found to be

faulty, the chip can automatically redis-

tribute the expression of the genome so as to

avoid those cells. This promising approach

implies that the use of arti�cial evolution

may be able to augment the highly e�ec-

tive fault-tolerance techniques already de-

veloped for hand-designed systems.

4 Conclusion

Traditionally, humans design fault-tolerant

systems by providing spare parts. In con-

trast, arti�cial evolution can produce sys-

tems that are inherently tolerant to faults

by the nature of their construction, with-

out explicit redundancy. Viewing arti�cial

evolution as an automatic design process,

fault-tolerance can be


