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Abstract

It is well-known that certain learning methods (e.g., the perceptron learning algorithm) cannot

acquire complete, parity mappings. But it is often overlooked that state-of-the-art learning methods

such as C4.5 and backpropagation cannot generalise from incomplete parity mappings. The failure

of such methods to generalise on parity mappings is sometimes dismissed as uninteresting on the

grounds that it is `impossible' to generalise over such mappings, or on the grounds that parity

problems are mathematical constructs having little to do with real-world learning. However, this

paper argues that such a dismissal is unwarranted. It shows that parity mappings are hard to learn

because they are statistically neutral and that statistical neutrality is a property which we should

expect to encounter frequently in real-world contexts. It also shows that the generalization failure

on parity mappings occurs even when large, minimally incomplete mappings are used for training

purposes, i.e., when claims about the impossibility of generalization are particularly suspect.

1 Introduction

The parity rule is easily stated (e.g., `the output value is true if and only if an odd number of input

values are true') but it is surprisingly hard to learn by conventional methods. The reason is related

to the fact that parity mappings are statistically neutral. The probability (i.e., frequency) of seeing

some particular input value mapped onto some particular output in a parity mapping always turns out

to be the chance value of 0.5. This means that it is impossible to build successful rules which focus

on particular input values: any successful rule must attend to all the input values in order to get the

answer right in all cases.

For the machine learning researcher, the signi�cance



The paper divides up into three main sections. The next section (section two) analyses the statistical

basis of the parity problem and clari�es its relationship with the wider class of statistically neutral

problems. Section three presents a task analysis of learning which leads to a basic distinction between

hard and easy learning problems. Section four shows how the class of hard learning problems are

statistically neutral in principle but not in practice and demonstrates how incidental, statistical e�ects

can be exploited by standard learning methods. Section �ve is a discussion and summary.

2 Statistical properties of the parity problem

In a parity problem we have a number of boolean input variables and one boolean output variable. The

input/output rule states that the output should be true just in case an odd number of input values are

true.
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If there are just two input variables the problem is known as `Exclusive-OR' (or XOR) since it

is e�ectively the rule that either of the inputs can be true, but not both.

It is well known that parity problems are statistically neutral [1]. This means that all conditional output

probabilities exhibited by a parity mapping have `chance' values, i.e., that no input/output associations

exist. Consider the 3-bit (i.e., 3-input) parity problem, which can be written as a training set (using

1=true, 0=false) as follows.
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1 1 1 =) 1

1 1 0 =) 0

1 0 1 =) 0

1 0 0 =) 1

0 1 1 =) 0

0 1 0 =) 1

0 0 1 =) 1
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In Table 1 we see the unconditional and conditional probabilities for all input-variable instantiations.

Note that all the probabilities are exactly the chance value for a boolean value, namely 0.5. This is

a necessary consequence of the nature of the input/output rule. The frequencies with which we see

each of the two possible outputs when we put an input variable into a �xed state must always be equal

since there will be just as many cases of the un�xed variables which produce parity as non-parity.

Thus the output probabilities conditional on any particular input variable instantiation will always be

at the chance level. The statistical neutrality of the parity problem means that it cannot be solved

by statistical methods: any process of searching for dependencies between speci�c input and output

variables is of no bene�t because such associations simply do not exist. Thus, the performance of any

learning method which exploits such processes is necessarily compromised on a parity problem. (This is

of course what makes the parity problem a challenging benchmark.) But interestingly, it turns out that

parity is not the only type of problem for which statistical neutrality is guaranteed. Any problem that

can be converted into a modulus-addition problem is guaranteed to be statistically neutral provided

that the number of possible values for any given input variable is equal to, or an exact multiple of

the number of possible output values. To show this we argue backwards from observations about the

statistically neutral training set.

1

Arguably, since the rule tests for an odd number rather than an even number, the problem should be called the

disparity problem.
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person consumes heat =) yes

person consumes electricity =) no

person consumes moisture =) yes

person consumes silicon =) no

person dislikes heat =) no

person dislikes electricity =) yes

person dislikes moisture =) no

person dislikes silicon =) yes

computer consumes heat =) no

computer consumes electricity =) yes

computer consumes moisture =) no

computer consumes silicon =) yes

computer dislikes heat =) yes

computer dislikes electricity =) no

computer dislikes moisture =) yes

computer dislikes silicon =) no

We can con�rm the neutrality of this training set empirically by tabulating the relevant conditional

probabilities. (Table 2 shows the complete set of probabilities which have a �rst or zeroth-order condi-

tion.)
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=person 0.5 0.5
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=computer 0.5 0.5
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=consumes 0.5 0.5

x
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=dislikes 0.5 0.5

x

3

=electricity 0.5 0.5

x

3

=heat 0.5 0.5

x

3

=silicon 0.5 0.5

x

3

=moisture 0.5 0.5

Table 2: Conditional output probabilities in consumer mapping.

2.2 Performance of learning algorithms on neutral mappings

The performance of learning methods that rely on the exploitation of statistical e�ects is necessarily

compromised on statistically neutral problems. Learning methods that rely solely on the exploitation of

statistical e�ects produce worst-case performance on such problems. Algorithms in the CART family

[2] are a case in point. ID3 [3,4] for example, constructs a decision tree by recursively partitioning

the training set until every pair in a given partition maps onto the same output value. At each stage

of the process, a new partitioning is constructed by dividing up the cases in an existing partition

according to which value they have on the variable whose values are most strongly correlated (within

the partition) with speci�c output values. This has the e�ect of maximizing the output-value uniformity

of new partitions and thus minimising (subject to horizon e�ects) the total number of hyper-rectangular
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partitions required in order to achieve full uniformity. The algorithm is thus guided only by statistical

e�ects in the training data.

The implication is that ID3 should produce worst-case performance on parity profJ
30.2402 0non



the entire mapping in the training data, and have thus not tested the algorithm's ability to generalise

to unseen cases.

3

However, if we test backpropagation's ability to generalise to one unseen case in, say,

the 4-bit parity mapping (i.e., we present 15 of the 16 cases as training data, and test generalization

on the one remaining case), then the results are unambiguously poor.

In an exhaustive empirical analysis, backpropagation was tested for its ability to generalise to one,

randomly selected unseen case in the 4-bit parity mapping. In this analysis a standard, two-layer,

(strictly) feed-forward network was used with the number of hidden units being varied between 3 and

80. Data were collected for 20 successful runs (i.e., achievement of negligible error on the training data)

with each architecture. The learning rate was 0.2 and the momentum value was 0.9.

The results are summarised in Figure 2. This shows the post-training mean error for seens and unseens

averaged over the 20 successful training runs which were performed in each architecture. The basic

error value used here is simply the average di�erence between the target output and actual output

produced. The graph shows negligible mean error for seen cases due to the fact that data were only
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poor for all architectures used, i.e., no generalization is achieved. (The fact that the generalization here

is signi�cantly worse than chance is explained below.) For purposes of comparison we carried out an

identical analysis of backpropagation's generalization performance on the consumer problem (holding

back one case as an unseen) and obtained qualitatively similar results, see Figure 3.
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Figure 3: Post-training mean-error curves for consumer generalization.

2.4 Why algorithms fail to generalise over neutral mappings

The dynamics of the backpropagation process are complex. Explaining its generalization failure on

neutral mappings is thus not straightforward. The simplest hypothesis may be that, despite its manifest

success in the acquisition of small, complete parity mappings [8] backpropagation relies primarily on

the exploitation of statistical e�ects and is thus unable to deal properly with neutral mappings. There

are several arguments in favour of this idea.

First, the backpropagation learning algorithm is a generalization of the least-mean-squares algorithm

[9] (and perceptron learning algorithm [10]) which is e�ectively an iterative method for deriving statis-

tical input/output correlations. Thus the backpropagation learning method is rooted in a method for

exploiting statistical e�ects. Second, the generalization performance observed in the 4-bit parity tests

tended to be much worse than chance. This result is explained if the algorithm is primarily relying
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on statistical e�ects since the e�ect that is created when we delete one case from a parity mapping is

a correlation between input cases one Hamming unit away from the deleted case and the complement

of the output for those cases (i.e., the `wrong' output). Thus if the algorithm exploits input/output

correlations then it will tend to always generalise incorrectly from the minimally incomplete parity

mapping. The fact that it does do so tends to con�rm the hypothesis that backpropagation primarily

exploits statistical correlations.

3 Relational problems are approximately neutral

It is sometimes argued that parity mappings are arti�cial, mathematical constructs and that we should

therefore not be too concerned if we �nd that our learning methods fail to generalise over them. Parity

mappings are hard to generalise because they are statistically neutral. But neutrality, or approximate

neutrality is actually a common property of challenging learning problems. In fact it should be obvious

that any learning problem with a complex, relational input/output rule (i.e., a rule which tests for a

relationship among the inputs) will have an approximately nearly neutral training set.

If the input/output rule is relational then we do not expect to see any associations between speci�c

input values and speci�c output values showing up in the training set. There is an association; but it

involves a relationship among the inputs. Thus, we should expect that any relational learning problem

will have a neutral target mapping. Unfortunately, the truth of the matter is less clear-cut. Relational

rules, in fact, do not guarantee neutrality. The way in which a particular relational rule is encoded





values (see Table 4).

C P (y
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3.1 Sparse codings amplify incidental e�ects

The fact that generalising incidental e�ects can be created through the encoding of the underlying,

relational rule means that we can sometimes turn a `hard' learning problem into an `easier' problem

simply by applying an encoding which maximizes the strength and range of generalising incidental

e�ects. A simple approach involves using a sparse coding in which each input variable records9dtal





5 Acknowledgements

Many of the ideas in this paper were developed in collaboration with Jim Stone.

References

[1] Hinton, G. and Sejnowski, T. (1986). Learning and relearning in boltzmann machines. In D.

Rumelhart, J. McClelland and the PDP Research Group (Eds.), Parallel Distributed Processing:

Explorations in the Microstructures of Cognition. Vols I and II (pp. 282-317). Cambridge, Mass.:

MIT Press.

[2] Breiman, L., Friedman, J., Olshen, R. and Stone, C. (1984). Classi�cation and Regression Trees.

Wadsworth.

[3] Quinlan, J. (1986). Induction of decision trees. Machine Learning, 1 (pp. 81-106).

[4] Quinlan, J. (1993). C4.5: Programs for Machine Learning. San Mateo, California: Morgan Kauf-

mann.

[5] Wnek, J. and Michalski, R. (1994). Discovering representation space transformations for learning

concept descriptions combining DNF and m-of-n rules. Proceedings of ML-COLT'94.

[6] Rumelhart, D., Hinton, G. and Williams, R. (1986). Learning representations by back-propagating

errors. Nature, 323 (pp. 533-6).

[7] Beale, R. and Jackson, T. (1990). Neural Computing: An Introduction. Adam Hilger.

[8] Rumelhart, D., Hinton, G. and Williams, R. (1986). Learning internal representations by error

propagation. In D. Rumelhart, J. McClelland and the PDP Research Group (Eds.), Parallel Dis-

tributed Processing: Explorations in the Microstructures of Cognition. Vols I and II (pp. 318-362).

Cambridge, Mass.: MIT Press.

[9] Thornton, C. (1992). Techniques in Computational Learning: An Introduction. London: Chapman

& Hall.

[10] Minsky, M. and Papert, S. (1988). Perceptrons: An Introduction to Computational Geometry

(expanded edn). Cambridge, Mass.: MIT Press.

[11] Thrun, S., Bala, J., Bloedorn, E., Bratko, I., Cestnik, B., Cheng, J., De Jong, K., Dzeroski, S.,

Fisher, D., Fahlman, S., Hamann, R., Kaufman, K., Keller, S., Kononenko, I., Kreuziger, J.,

Michalski, R., Mitchell, T., Pachowicz, P., Reich, Y., Vafaie, H., Van de Welde, W., Wenzel, W.,

Wnek, J. and Zhang, J. (1991). The MONK's problems - a performance comparison of di�erent

learning algorithms. CMU-CS-91-197, School of Computer Science, Carnegie-Mellon University.

13


