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Abstract

This paper sets out a conceptual frame-

work for the open-ended arti�cial evolution

of complex behaviour in autonomous agents.

If recurrent dynamical neural networks (or

similar) are used as phenotypes, then a Ge-

netic Algorithm that employs variable length

genotypes, such as Inman Harvey's SAGA,

is capable of evolving arbitrary levels of be-

havioural complexity. Furthermore, with

simple restrictions on the encoding scheme

that governs how genotypes develop into

phenotypes, it may be guaranteed that if an

increase in �tness requires an increase in be-

havioural complexity, then it will evolve. In

order for this process to be practicable as a

design alternative, however, the time peri-

ods involved must be acceptable. The �nal

part of this paper looks at general ways in

which the encoding scheme may be modi-

�ed to speed up the process. Experiments

are reported in which di�erent categories

of scheme were tested against each other,

and conclusions are o�ered as to the most

promising type of encoding scheme for a vi-

able open-ended Evolutionary Robotics.

Introduction

Early work in Evolutionary Robotics has succeeded

in producing simple behaviours for autonomous

agents [2, 5, 9, 1]. It is becoming increasingly clear,

however, that there is an upper limit to the be-

havioural complexity that Genetic Algorithm (GA)

optimization techniques alone may achieve. If ar-

ti�cial evolution is ever to become a practicable

alternative to human ingenuity in the design and

creation of control architectures for autonomous

agents, then this limit has to be overcome. This

paper sets out what has to be done to ensure that

the evolutionary process underlying a viable ER is

limitless in terms of the





slopes or vertical cli�s, many local maxima or no

maxima at all, that has the single most profound

e�ect on the speed and e�ciency of the search.

Every �tness value is a function of the total pro-

cess that results in its assignment to a genotype,

from the encoding scheme under which a pheno-

type is developed to the nature of a �tness trial.

It is a mistake to regard the topography of the �t-

ness landscape, as overlaid on the graph of possible

genotypes, as a function of any one component of

this process. Changing the encoding scheme will

have just as drastic e�ects on the relative �tness

of individual nodes as altering the �tness test. For

any given selection criteria (such as a particularly

di�cult ER task, for instance) it may be possible to

shape the �tness landscape into something that the

evolutionary process �nds easy by the careful selec-

tion of an appropriate encoding scheme along with

other components of the �tness assignment process.

This issue is of overwhelming importance to the via-



proach should not constitute the primary focus of

enquiry.

2.2 Neutral networks

The other way to guarantee that arti�cial evolution

is open-ended places the emphasis on the �tness as-

signment process. It ensures that there are no local

�tness maxima in the �tness landscape by placing

restrictions on the encoding scheme; an evolution-

ary process employing nothing much more compli-

cated than hill-climbing is thus guaranteed to be

open-ended. The restrictions may take many forms,

but for a simple example let us look at an encod-

ing scheme in which it is always possible to add

extra genetic material (in the form of extra bits,

characters etc) to the genotype without e�ecting

the phenotype, and it is always possible to switch

segments of the genotype `on' or `o�' by way of sin-

gle point mutations. These restrictions may seem

strange but they are in fact true of the encoding

scheme behind natural development. In order to

show that there are no local �tness maxima in the

resultant �tness landscape, consider a worst case

scenario - the genotype coding for a particular phe-

notype cannot undergo a normal single point mu-

tation anywhere along its length without su�ering

a loss in �tness. Extra genetic material that is `o�'

can always be added to the genotype without e�ect-

ing the phenotype, however, and this will eventually

lead, after a monkeys-typing-Shakespeare length of

time, to the evolution of a stretch of `junk dna'

that codes for a �tter phenotype (if there is one)

than that expressed by the current `on' stretch of

genotype. Since a single-point mutation can always

switch an `on' stretch of genotype to `o�' and an

`o�' stretch of genotype to `on', it is therefore pos-

sible that the `junk dna' is expressed while the rest

of the genome is switched `o�', thus producing a

�tter phenotype.

Under this encoding scheme, we can guarantee

that no node or set of nodes on the graph of all

possible genotypes constitutes a local �tness maxi-

mum. All nodes will connect to at least a few other

nodes of the same corresponding �tness thus form-

ing large neutral networks (the term here is adapted

from its use in [10]). In every neutral network there

will be one or more nodes that also has an up-hill

connection to a node in a neutral network of higher

�tness. It is possible, therefore, to �nd a path from

any node through the graph of possible genotypes

that monotonically increases
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, with respect to cor-

responding �tness, ad in�nitum.

If this approach is taken seriously then the major

part of the evolutionary process behind an open-

ended ER becomes a matter of searching neutral

networks for connections that lead up-hill on the �t-
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monotonically increasing means never going down, not

always going up.

ness landscape, and not hill-climbing itself.`junk evtof



2.3 How a simple GA would work in the

context of neutral networks

So far, no explanation has been given of how an

open-ended GA would work. This is because, in or-

der to give a satisfactory account, some knowledge

of the nature of the search space is required. There

is no point, for instance, in spending time explain-

ing and ensuring how an open-ended GA will never

settle on a local �tness maximum if there are no lo-

cal �tness maxima in the �tness landscape. Having

shown that the most promising way to think about

�tness landscapes for open-ended arti�cial evolu-

tion is in terms of inter-connected neutral networks,

we are now in a position to give an exposition of

what we require from a simple GA in order for it

to operate on such a landscape, and how we expect

one to meet these requirements. This will give a

general picture of the evolutionary process under-

lying an open-ended ER which we may use to point

the way forwards for performance improvements.

If the �tness landscape consists of neutral net-

works connected together by slopes, we certainly

require the GA behind open-ended arti�cial evolu-

tion to perform hill-climbing type search. This is

only half the story, however. It is important to re-

alize that as well as being connected to nodes of

equal corresponding �tness, every node on a neu-

tral network is connected to many that are of lower

corresponding �tness. The application of genetic

operators to a particular individual will result in a

genotype of lower corresponding �tness just as eas-

ily (usually much more easily) as one of equal corre-

sponding �tness. This means that the GAmust also

prevent the population from `falling o�' whichever

neutral network it happens to be on while continu-

ing the search.

If the rate at which genetic operators (such as

mutation or a `change length' operator) are applied

is kept low, the selection pressure in conjunction

with the constant renewal of the population will

ensure a high degree of genetic convergence. The

population will thus cluster together on the graph

of possible genotypes exploring a compact region

thoroughly.









encoded and searched for,


