
Improving Software Designs

via the

Minimum Description Length Principle

Joseph

Gender

Male pronouns have been used in this thesis to refer to people of both sexes in order to smooth the

flow of the text rather than imply any sexual bias.

Nomenclature

The word Ada without qualification refers to the Ada83 programming language, defined in Ichbiah

et al. (1983).

HOOD, without qualification, is used to refer to HOOD version 3, defined in Delatte et al.

(1993). All references to HOOD 4 (HOOD HRM, 1995) are explicit.

A number of words are used in the literature (e.g., function, procedure, operation, and routine)

to refer to a similar concept. Frequently, each word has a slightly different meaning; for example,

functions are often seen as procedures without side-effects. In this thesis we do not require these

distinctions, and so all such words are equivalent. In general we shall use HOOD’s term operation.

In this thesis, the word object is used to refer to a collection of co-operating items, whereas

the word module is generally used to refer to the older concept of sub-progra

Trademark Acknowledgments

A number of trademarks are used in this thesis and for brevity are declared once here as follows

but apply throughout the thesis:

Trademark Trademark Owner

Ada U.S. Department of Defense, Ada Joint Program Office.

ANSI American National Standards Institute.

AT&T AT&T.

HOOD HOOD User Group.

POPLOG University of Sussex.

PostScript Adobe, Inc.

SADT SofTech, Inc.

UNIX AT&T.

All other trademarks are acknowledged.

Typographic Conventions

A few type definitions are given in Chapter 7, these are presented in VDM, see for example Casey

(1994) or Dawes (1991). We have adopted the convention that type-names start with an uppercase

letter, and record field names start with a lowercase letter.

viii Contents

3.3 Objects - Architectural Components . 28

3.3.1 Traffic Lights - Graphical Notation . 28

3.4 HOOD Components . 29

3.4.1 Passive Objects . 29

3.4.2 Active Objects . 30

3.4.3 Operation Control Objects . 30

3.4.4 Environmental Objects . 30

3.4.5 Visibility . 30

3.5 HOOD Entities . 31

3.6 Textual Representation . 31

ix

6.3 A Complexity Measure? . 67

6.4 Theoretical Validation . 67

6.4.1 Weyuker’s Properties . 67

6.5 Conclusion . 72

III Morpheus 73

7 Morpheus: A Prototype System 75

7.1 Extensions to HOOD - Augmented HOOD . 75

7.2 Implementation . 76

7.2.1 Basic Structure . 76

7.2.2 Parser . 76

7.2.3 Data Analyser . 78

7.2.4 Improvement Engine . 82

7.3 Limitations . 85

7.3.1 Physical Resources . 85

7.3.2 Missing Information . 86

8 Empirical Evidence in Support of Ψ 87

8.1 Initial Experiments . 87

8.1.1 Varying Group Size . 87

8.1.2 Moving Basic Entities . 92

8.1.3 Reducing Cohesion . 92

8.1.4 Increasing Coupling . 99

8.2 A Small Example: Traffic Lights . 106

8.2.1 Discussion on the Traffic Lights Design 107

8.3 TriviCalc - A System to Design . 114

8.3.1 Improvement? . 115

8.3.2 Support for Future Changes? . 115

9 Summary and Conclusion 117

9.1 Summary of this Thesis . 117

9.2 Evaluation . 118

x Contents

C Glossary and Abbreviations 179

D Notation Summary 183

List of Figures

1.1 Overview of Morpheus . 3

2.1 Design requirements . 10

2.2 Design forms . 11

2.3 Interaction of Coupling and Cohesion . 22

3.1 Waterfall Model of the Software Life-cycle . 26

xii List of Figures

8.5 Cohesion with 2 groups, one with 10 links . 93

8.6 Cohesion with 2 groups, one with 9 links . 93

8.7 Cohesion with 2 groups, one with 8 links . 94

8.8 Cohesion with 2 groups, one with 7 links . 94

8.9 Cohesion with 2 groups, one with 6 links . 95

8.10 Cohesion with 2 groups, one with 5 links . 95

8.11 Cohesion with 2 groups, one with 4 links . 96

8.12 Cohesion with 2 groups, one with 3 links . 96

8.13 Cohesion with 2 groups, one with 2 links . 97

8.14 Cohesion with 2 groups, one with 1 link . 97

8.15 Cohesion with 2 groups, one with no links . 98

8.16 Coupling with 2 groups, and no links between groups 100

8.17 Coupling with 2 groups, and 1 link between groups 100

8.18 Coupling with 2 groups, and 2 links between groups 101

8.19 Coupling with 2 groups, and 3 links between groups 101

8.20 Coupling with 2 groups, and 4 links between groups 102

8.21 Coupling with 2 groups, and 5 links between groups 102

8.22 Coupling with 2 groups, and 6 links between groups 103

8.23 Coupling with 2 groups, and 7 links between groups 103

8.24 Coupling with 2 groups, and 8 links between groups 104

8.25 Coupling with 2 groups, and 9 links between groups 104

8.26 Coupling with 2 groups, and 10 links between groups 105

8.27 Graph of original Traffic Light design . 109

8.28 Graph of flat Traffic Light design without environment 110

8.29 Graph of flat Traffic Light design with environment 111

8.30 Graph of Morpheus’s Traffic Light design without environment 112

8.31 Graph of Morpheus’s Traffic Light design with environment 113

B.1 Diagram of initial display . 131

List of Tables

6.1 Calculation of Chain Graph’s Message Length 61

6.2 Calculation of Star Graph’s Message Length . 62

8.1 Effect of Increasing Group Size . 88

8.2 Effect of Reducing Cohesion within a Group . 92

8.3 Effect of Increasing Coupling between Groups 99

8.4 Experiments with Traffic Light Design . 106

Part I

Background

1

Chapter 1

Introduction

4 Chapter 1. Introduction

� How is the input of a design to be expressed?

� How are alternative designs created?

� What constitutes a ‘better’ design?

It is the purpose of this thesis to try and answer these questions.

1.2 Motivation

We know from empirical studies (Boehm, 1981), that the cost of correcting defects grows signifi-

cantly the later in the development process the problem is uncovered. Therefore the more potential

errors that are found in the early stages of development reduces the economic costs of owning the

software. This potential for significantly decreasing costs means that the design phase of software

development is an area which merits further research. Moreover, software design is a sophisticated

human skill worthy of study for its insights into other intelligent behaviour.

Most Computer Aided Software Engineering (CASE) tools available today, are little better

than glorified drawing packages sometimes with associated databases. Such tools provide support

for drawing pictures, and recording information about the software being designed. The more

sophisticated systems allow information to be shared by several engineers, and detect improper

use of notation and missing elements. Although useful these facilities are limited and perform

1.4. Synopsis of the Research 5

sub-modules its children, and the module containing a given sub-module its parent. Modules

which may contain sub-modules are called nestable. Modules, unlike humans, can only have

one parent. Further, if a module is contained in another (larger) module, then the whole of the

sub-module must be contained in the single parent.

When an entity has to be shared between several modules, there is potentially some tension as

6 Chapter 1. Introduction

�

1.6. Outline of our Solution 7

The beginning of wisdom is found in doubting;

by doubting we come to the question,

and by seeking we may come upon the truth.

Chapter 2

Software Design

Synopsis

This chapter examines the meaning of software design in more detail. We start by

asking “What is design?”, and looking at the variety of different functions that a

design has to perform. In particular we shall see that a design is not purely mechanical

but captures the value judgements of those who contribute to the design. We shall then

look at various ways for capturing designs and briefly review a broad range of design

methods. We shall then examine the established properties of a good design. We

conclude by looking at the meaning of architectural design and the idea of a design as

a graph.

2.1 Design Theory

Design1 theory is concerned with the nature of blishn

10 Chapter 2. Software Design

design is implemented, the resultant system will satisfy the requirements (see Figure 2.1). This

would also suggest that the success of a design cannot be isolated from its implementation.

2.1. Design Theory 11

importance (see Section 2.7). That is, the correct identification and connectivity of components is

essential to the design meeting its requirements; however, simply connecting a set of components

at random does not of itself constitute a design, the whole must be a unified system.

Dasgupta also makes the observation that a design form must serve as a user guide. At first

this may seem strange to software engineers who are used to separate user guides. Nonetheless,

we do expect this information in a design form. Given a new object, the first few questions are

likely to be “what does it do, and how do I use it?”, i.e., we want a user guide. Only when we have

received satisfactory answers to these questions, do we inquire into the connectivity of the object.8

Dasgupta’s final requirement for a design form is normally not addressed by software design

methods, and its absence is responsible for much current research in software and Computer Sup-

ported Collaborative Work (CSCW); a little reflection confirms that it is a necessary condition.

The design form must capture the justification (and history) of a design, so that it can be critically

examined and support changes. That is, the design form must encapsulate some notion of why

this is the preferred design. An immediate consequence is to change the nature of the design from

a static document to a dynamic form. This area is fraught with difficulties, firstly because of the

volume of information and secondly the designer may be reluctant to explain his reasoning due to

satisficing (see Section 2.1.5).

These differing requirements for the design form, are captured diagrammatically in Figure 2.2.

14 Chapter 2. Software Design

This language need not be the same as the previous language.

� The target implementation language. This impacts on the types of abstraction which will

be considered by the designer. Whilst it is true that all software ultimately runs in ma-

chine code, some languages are better suited to specific task

2.3. Design Notations 15

16 Chapter 2. Software Design

development and expression of a specification. Formal notations are intended to be accompanied

by a natural language description of what the mathematics is modelling.

Formal languages have the advantage of being precise, unambiguous and amenable to rigorous

analysis using all the leverage that mathematics can bring to bear. Moreover they permit the

engineer to move away from the fuzzy languages used in the initial specification, and use a more

abstract and precise notation. Precise notation allows the designer to look for missing parts of the

design/specification and ambiguities, whilst also permitting a more abstract model to be developed

which allows alternatives to be explored.

However, formal languages are not without their problems. Most notably their very reliance

on mathematical notation and reasoning which the average engineer is unfamiliar with. This

is not unreasonable since the software engineers must communicate with customers and other

non-specialists. Also as Jackson (1995, p.116) has noted “formalists often forget the need to tie

their descriptions to the reality they describe”. Fetzer (1988) observed that it is impossible to

mechanically (completely) derive an implementation from a specification, which some advocates

of formal methods seem to believe. The cost (in terms of time) of producing a formal model, can

be quite high and may not be justifiable in terms of the benefits to the project.

There are undoubted areas on some projects where the advantages of formal methods outweigh

their disadvantages, but they should not be seen as a panacea, but rather as a valuable part of

software engineering’s toolkit.

2.3.4 Choice of Language

By this stage the reader may be wondering about our choice of design notation. We believe that

2.4. Design Methods 17

� Modular Approach to Software Construction Operation and Test (MASCOT) (MASCOT,

1987)

Let us briefly consider stepwise refinement as an example of this design methodology. Step-

wise refinement was proposed by Wirth (1971). The design is developed by successively refining

the previous procedural detail. Thus a system is progressively decomposed from high level func-

tional statements until programming language statements are reached. This process can be though

of as elaborating the design, at each iteration we provide more detail.

At least three different “rules” for refinement have been identified, namely (Grogono, 1980):

divide and conquer, make finite progress, and analyse cases. It is important to realise that at

each iteration a decision (there are always choices) must be made on the “best” way to proceed.

Following this method can lead to dead-ends, and therefore it may be necessary to backtrack and

re-iterate again.

The method is not prescriptive and does not guarantee a solution, nor indeed does it always

provide a notation. It is heavily biased towards the Waterfall model, and is often used as a basis

for teaching design.

The criticisms raised against functional decomposition stem from three main observations.

Firstly, the top level decomposition must be made when knowledge of the problem is least devel-

oped and the method offers no certainty that we have identified the top level function correctly or

that our refinement is not a blind alley. (Think of this as a search, are we starting from the root

node and which child do we visit next?) Secondly, Jackson (1983) has argued that the functions

change over the life of the system as opposed to the structure of the data. Thirdly, the design of

key data structures etc. can permeate the entire program.

It is the second and third problems have led to the evolution of object-oriented design.

2.4.2 Data Structured Design

These methods seek to mould the program (structure) to the structure of the data. An archetypal

example is file handling. These methods do not attempt to model the flow of data through the

system, but rather the static structure of the data. Examples of these methods include:

� Jackson Structured Programming (JSP) (Jackson, 1975)

� Jackson System Development (JSD) (Jackson, 1983)

� Warnier-Orr (Orr, 1971)

The major problem with these methods is their rigidity; the necessity to identity the data’s

structure. Additionally implementations tend to be slow; JSD tends to lead to a large number of

processes, and context switching is expensive (Deitel, 1984). JSP tends to be more mechanistic

than some other design methods, and has been used as the basis for some undergraduate design

courses. However JSP can lead to dead ends caused by structure clashes due to discrepancies

between different real-world data structures.

2.4.3 Object Oriented Design

In this group of methods, the problem domain is seen as being composed of objects and classes of

objects. An object encapsulates both algorithms and data. Objects are potentially related to each

other in a variety of ways, not all of which are hierarchical in nature. For example, a filled red

2.5. Complexity: The Scourge of Engineering 19

� Vienna Design Method (VDM) (Jones, 1986)

�

20 Chapter 2. Software Design

6. A design should be derived using a repeatable method that is driven by inform-

ation obtained during software requirements analysis.

Pressman (1992, p.318)

Although the term module is used above, it is clear that our definition of object could equally

be used in its place.

2.6 Architectural Design

In this section we look in more detail at the concept of architectural design. In particular we

examine why we regard architectural design as more significant to the success or failure of a

design than detailed design.

By architectural design we mean the identification of the major components of the design,

especially their purposes and interfaces. How we can see the reason why we claim that detailed

design is less important; detailed design is concerned with designing the internals of the identified

components. As Fowler and Scott (1997, p.22) observed “ : : : the biggest technological risks

are inherent in how the components of a design fit together, rather than present in any of the

components themselves”. Moreover, designing the internals is obviously a much smaller and self-

contained problem than the original problem.

In practice, of course, once a ‘large’ component has been identified, the design of its internal

structure is also architectural in nature not just detailed design. We regard the architecture of

‘large’ components to be part of the architectural design phase. Specifically we classify detailed

design as deciding how a component’s services should be provided rather than deciding what

services should be provided.

We saw in the previous section that good design requires objects which are largely indepen-

dent and have a good logical structure. These two concepts are captured by loose coupling and

high cohesion, respectively. These concepts are further examined below, after we have described

exactly what is meant by a component.

2.6.1 What is an Object?

So far, we have been deliberately rather vague about what we mean by a software component or

object. We now offer a more precise definition.

An object is a model of a real-world entity or a software solution entity that combines

data and operations in such way that data are encapsulated in the object and are ac-

cessed through the operations. An object thus provides operations for other objects,

and may in turn also require operations of another object. An object may have a state,

either explicitly to provide control or implicitly in terms of the value of the internal

data. Robinson (1992a, p.34)

This definition accords with Pressman (1992) earlier properties for good design, and gives us

a good definition of an object. It is important to note that an object (generally) both provides

services to other objects and requires services from other objects. This definition does not rule out

mutual recursion, but normally this is rare.

Most modern programming provide the object concept, albeit under a variety of different

names: class, cluster, module, package and structure.

2.6.2 Are these the Right Objects?

Having defined the term ‘object’, and a definition of good design properties, we how require some

guidance on determining the quality of a proposed architectural design.

22 Chapter 2. Software Design

books, which results in communicational cohesion and hence is traditionally considered unsatis-

factory. However, in OOD using an object to represent an abstract data type is considered good

practice.

A generally accepted cohesion scale from highly desirable to accidental is shown below,

(Pressman, 1992, p.334):

Functional Cohesion All components of the module contribute to a single task.

Sequential Cohesion The module’s components are used in some fixed order to perform a task;

but it lacks a strong sense of single mindedness.

Communicational Cohesion The components are located in the same module because they use

the same input or output data rather than having functional cohesion.

Procedural Cohesion The components are related because they are used in some fixed order at

particular moments in time. For example, the use of procedure B must always be preceded

by the use of procedure A.

24 Chapter 2. Software Design

Unfortunately, this description is a little too simple, because most large designs require some

Chapter 3

An Overview of HOOD

26 Chapter 3. An Overview of HOOD

it suffices to use a basic model, called the Waterfall model (Pressman, 1992). The Waterfall model

is depicted in Figure 3.1. It must be stressed that the Waterfall is an idealised model, and not a

description of what may happen on a real project.

System
Engineering

""
Analysis

!!

cc

3.2. Example: Controlling the Traffic Lights 27

(a) Statement of the problem

28 Chapter 3. An Overview of HOOD

3.3 Objects - Architectural Components

HOOD regards objects as the architectural building blocks. This section explains the nature of

objects, and in particular objects in HOOD

3.4. HOOD Components 29

30 Chapter 3. An Overview of HOOD

terminal object has at least two child objects

3.5. HOOD Entities 31

3.4.5.2 Inter-Object Visibility

The question of inter-object visibility really boils down to the question, what objects are visible to

the Required Interface of the object being considered. Note that all such entity references must be

resolved by including the object’s name.

� All environmental objects are visible throughout the system.

� The Provided Interface of all of an object’s siblings are visible.

� The Required Interface of the object’s parent (if not a root object) is visible.

� Nothing else is visible.

3.5 HOOD Entities

This section describes the entities which may make up a HOOD object.

Types in HOOD

32 Chapter 3. An Overview of HOOD

OBJECT traffic_lights IS ACTIVE

DESCRIPTION

--The traffic lights system controls four traffic lights at a crossroads.

The traffic sensors inform the system of waiting traffic.--

IMPLEMENTATION_CONSTRAINTS

--The system is driven by a 1Hz clock--

PROVIDED_INTERFACE

OPERATIONS

second ;

OBJECT_CONTROL_STRUCTURE

DESCRIPTION

--Each second, traffic_lights is activated to look at the traffic

sensors and to change the lights.--

CONSTRAINED_OPERATIONS

second CONSTRAINED_BY ASER_BY_IT --|#1234|-- ;

REQUIRED_INTERFACE

NONE

INTERNALS

OBJECTS

seconds ;

traffic_sensors ;

lights ;

TYPES

road ; --| is (AC, BD) defines road configuration |--

OPERATIONS

second IMPLEMENTED_BY seconds.count ;

OBJECT_CONTROL_STRUCTURE

IMPLEMENTED_BY seconds ;

END_OBJECT traffic_lights

The description section introduces a textual comment describing the problem. It may contain

anything the designer wishes. All comments in an ODS are bracketed by ‘--f’ and ‘g--’. In

addition to comments, an ODS may contain free text, bracketed by ‘--|’ and ‘|--’. Free text may

only occur in specific places in the ODS, and used as a mechanism for passing additional inform-

ation to other tools, the text has no defined meaning in HOOD. The implementation constraints

3.6. Textual Representation 33

The design for lights is shown below

OBJECT lights IS PASSIVE

DESCRIPTION

--fObject lights is used to set a traffic light pair to a selected colour;

allowing for proper sequencing of all lights as necessary for safety.g--

IMPLEMENTATION_CONSTRAINTS

--fIn this simulation, text_io is used to provide a readable output.g--

PROVIDED_INTERFACE

TYPES

colour ; --| is (RED, RED_AMBER, GREEN, AMBER) |--

OPERATIONS

change (road_name : IN traffic_lights.road ;

to_colour : IN colour) ;

REQUIRED_INTERFACE

OBJECT traffic_lights

TYPES

road ;

OBJECT text_io

TYPES

string ;

OPERATIONS

put_line (item : IN string) ; --| print a string |--

INTERNALS

DATA

other_road : traffic_lights.road ;

OPERATION_CONTROL_STRUCTURES

OPERATION change (road_name : IN traffic_lights.road ;

to_colour : IN colour)

DESCRIPTION

--fThe data item other_road is initialised to the opposite of the

value of road_name. If the requested colour is GREEN, operation

change controls the full sequencing from GREEN to AMBER to RED

for one light set, and RED to RED-AMBER to GREEN for the other

light set.

If the requested colour is RED or AMBER, operation change simply

sets the requested light to RED or AMBER.g--

USED_OPERATIONS

text_io.put_line (item : IN string) ;

PSEUDO_CODE

--|if road_name = AC then

set other_road = BD

else

set other_road = AC

end if ;

if to_colour = GREEN then

set other_road lights to AMBER ;

set road_name lights to RED-AMBER :

34 Chapter 3. An Overview of HOOD

set other_road lights to RED ;

set road_name lights to GREEN :

else

set road_name lights to to_colour ;

endif |--

END_OPERATION change

END_OBJECT lights

Much of this is as for traffic lights so we will only discuss the new sections.

The required interface section now says that lights requires types traffic lights.road

and text io.string, in addition to the operation text io.put line.

The new section operation control structures contains an entry for each operation declared

in the internals. Each operation is described as required. This is followed by a list of used

operations, and optionally as comments) pseudo code and the final code.

The designs for seconds and traffic sensors are shown below

OBJECT seconds IS ACTIVE

DESCRIPTION

--fObject seconds is activated from its parent object traffic_lights by the

operation traffic_lights.second. It checks for traffic and changes the

lights if appropriate.

Seconds keeps a count of the time since the last light change and the

road pair that is GREEN (AC/BD).

After 40/20 seconds elapsed, seconds checks the traffic_sensors each

second. When the traffic sensors show that there is traffic waiting at

the other road, the lights are changed.g--

IMPLEMENTATION_OR_SYNCHRONISATION_CONSTRAINTS

--fOperation count of object seconds is activated once every second by

interrupt at address 1234.g--

PROVIDED_INTERFACE

3.6. Textual Representation 35

to_colour : IN colour) ;

OBJECT traffic_sensors

TYPES

present

OPERATIONS

36 Chapter 3. An Overview of HOOD

is_present : IN OUT present) ;

REQUIRED_INTERFACE

OBJECT traffic_lights

TYPES

road ;

INTERNALS

TYPES

latch ;

DATA

ac_sensors : latch ;

bd_sensors : latch ;

OPERATIONS

read_sensor (sensor : IN latch) RETURN present ;

check (road_name : IN traffic_lights.road ;

is_present : IN OUT present) ;

OPERATION_CONTROL_STRUCTURES

OPERATION check (road_name : IN traffic_lights.road ;

is_present : IN OUT present)

DESCRIPTION

--fOperation check reads the hardware sensors for the road given in

the parameter road_name to find out if traffic is present on

either side, and returns the value is_present set to TRUE or

FALSE.g--

USED_OPERATIONS

read_sensor (sensor : IN latch) RETURN present ;

END_OPERATION check

OPERATION read_sensor (sensor : IN latch) RETURN present

DESCRIPTION

--fOperation read_sensor reads a hardware sensor at the given sensor

latch, and returns the value TRUE or FALSE.g--

END_OPERATION read_sensor

END_OBJECT traffic_sensors

Finally the design of the environmental object text io is below, recall that such objects have

nothing except a provided interface.

OBJECT text_io IS ENVIRONMENT PASSIVE

PROVIDED_INTERFACE

TYPES

string ;

OPERATIONS

put_line (item : IN string) ; -

END_OBJECT text_io

3.7 Unused HOOD Facilities

As mentioned in the introduction to this chapter, some features of HOOD were not used in this

thesis. This section briefly outlines these unused features, and explains why they were omitted.

Generic Classes in HOOD allow the creation of Ada generic objects, which can then be instanti-

ated to form objects. Their use in HOOD is not very common, and how this kind of inform-

ation should be handled in our complexity measure is far from clear.

Chapter 4

Complexity Measures

Synopsis

This chapter provides a critique of previous work on measuring software design com-

plexity. The advantage of a design metric is that it can be used early in the production

process to identify potential trouble spots thereby reducing the costs of production.

Design metrics are therefore required to detect over complex objects. We conclude

the chapter by considering ways to validate proposed complexity measures.

In Chapter 2, we examined the problems associated with capturing designs, in terms of design

as an activity, the effects of different design notations and the different design methodologies. In

Chapter 3, we introduced HOOD as our chosen design notation and method for reducing complex-

ity. The Chapter concluded by demonstrating that HOOD is a reasonable choice in the light of

Chapter 2. Before developing our model further this chapter provides a critical review of related

work in determining design complexity.

4.1. Requirements for a Complexity Measure 39

4.1 Requirements for a Complexity Measure

Based on the above overview, we want our complexity measure to satisfy the following require-

ments

� It must be possible to evaluate a design’s complexity without reference to its implementa-

tion.

�

40 Chapter 4. Complexity Measures

� LOC tells us nothing about how to make complex designs less complex.

We have been very critical of LOC, perhaps unfairly as this measure was never meant to reflect

design quality or complexity. However, this analysis does serve to lay a framework for discussing

other proposed program complexity measures.

The most notable code metrics are Software Science (Halstead, 1977) and Cyclomatic Com-

plexity (McCabe, 1976). Both have been quite well researched; and were initially regarded quite

favourably, but more recently their theoretical underpinnings have been shown to be weak (see

Shepperd and Ince, 1993, p.28–40).

Since software engineers use such a wide variety of notations, some researchers have tried

to extract design information from the resulting program code rather than the design (Shepperd,

1993, p.8), but as Shepperd comments “this must be considered a last resort”. The problem is that

the information is available so late and furthermore the code implementation may have an impact

on what exactly is measured.

Clearly, due to their late availability and doubts over their value as complexity metrics, code

metrics are unsuitable for our purposes. So we shall now look at some of the proposed design

metrics.

4.2.2 Design Metrics

4.2. Existing Complexity Metrics 41

Shepperd reports because distance metrics which yielded intuitive results with one design failed

to produce acceptable results for other examples. Even small changes to a design could make the

resultant dendrogram unappealing to our intuitive notions of a good design. We conclude therefore

that this approach was unsuitable for our purposes.

4.2.3 Object Oriented Design Metrics

As explained earlier this thesis is not based on object oriented design but rather object based design

concepts, but given the current interest in the work of Chidamber and Kemerer (1994), we deal

briefly with this subject. Chidamber and Kemerer proposed a set of six metrics for measuring a

variety of attributes of object-oriented systems (by examining the program code). These attributes

are: weighted methods per class, depth of inheritance tree, number of children of a class, coupling

between object classes, response for a class (i.e., the number of methods potentially called by a

class) and lack of cohesion in methods.

Their work, which has become a de facto standard for object-oriented metrics, includes a philo-

sophical basis and theoretical validation against the Weyuker (1988) property set for complexity

measures. However Chidamber and Kemerer offer no method for trading between the measured

attributes, for example coupling and cohesion. Churcher and Shepperd (1995) have also observed

that Chidamber and Kemerer definitions need to be made more precise in the light of differences

between languages—so that cross comparisons amongst different work can be carried out. Briand

et al. (1996) also show that Chidamber and Kemerer metrics do not satisfy their proposed require-

ments for complexity metrics. However, Chidamber and Kemerer never claim that their metrics

were intended to be complexity measures.

4.2.4 Information Theory and Design Metrics

There have been a few measures of software complexity based on information theory. Khoshgof-

taar and Allen (1994) survey information theory and software metrics. The following section is

derived from their survey findings.

Mohanty (1981) uses a measure of excess entropy1 to study the information shared between

objects. Mohanty regarded this as a measure of interface complexity, but Khoshgoftaar and Allen

see this as a measure of object coupling. Whatever Mohanty is measuring, his approach does not

offer any form of trade-off between object properties.

Lew et al. (1988) take measurements of several different kinds of connectivity between objects,

based on message type (control or data) and the static structure of the exchanged data types, to

produce three different entropy measures. These measures are then combined into a single measure

of complexity. Lew et al.’s use of distinct measures for different design attributes reflects their

different role in a design, but forming a single measure from unrelated sources seems unjustified.

Harrison (1992) proposed a complexity measure based on measuring the entropy of a pro-

gram in terms of used operations. Harrison’s approach is similar in nature to Halstead’s Software

Sciences and suffers from the obvious problem of being code based rather than design based.

However, Harrison did validate his proposed metric against Weyuker’s property set, and showed

that it should be considered as a contender for measuring complexity. Harrison’s metric is quite

closely related to our proposed metric (for a given graph), but unfortunately uses out-degree rather

than (total-)degree for each node. Furthermore, Harrison does not extend his metric to handle

42 Chapter 4. Complexity Measures

4.3 Combining Different Measures

We have already observed that design involves trade-offs between different attributes, for example

coupling and cohesion. Strictly speaking, however, we cannot make these comparisons, because

4.6. Validating Complexity Measures 43

entities, e.g., procedures, types and variables. There is no reason why both the edges (v;w) and

(w;v) should not exist in the same graph.

A node v will in general require a set of requisitions, Req(v), and offer a set of provisions,

Prv(v), algebraically,

Prv(v) =
[

x2V

EC(v;x)

Req(v) =
[

x2V

EC(x;v)

However, most languages do not offer precise control over imports and exports, so Müller

et al. defines exact requisitions, ER(v;w), (of v from w) and exact provisions, EP(v;w), (of v to w)

between nodes, which can be calculated as below

ER(v;w) = Req(v)\Prv(w)

EP(v;w) = Prv(v)\Req(w)

Having defined exact provisions and exact requirements, Müller et al. now defines a measure

of interconnection strength, IS(v;w), as the exact number of resources flowing between the two

nodes v and w as

IS(v;w) = jER(v;w)j+ jEP(v;w)j

44 Chapter 4. Complexity Measures

their designs, we have been unable to carry out any empirical validation. However, we have con-

ducted a number of informal experiments (see Chapter 8) and we are satisfied that the measure is

reasonable.

Weyuker (1988) proposed a set of nine properties which any measures of program complexity

should satisfy. Her proposal is widely accepted (Shepperd and Ince, 1993) as a basis for theoretical

validation, although it has some shortcomings. For example Fenton (1994) argues that two of

Weyuker’s properties (i.e., W-Property 6.5 and 6.6, see Chapter 6) capture different notions of

complexity versus comprehension. However, we do not see why different members of a set of

properties should not try to capture different aspects of a relationship. We would be concerned if

the property set was internally inconsistent.

Part II

Theory

45

Chapter 5

Mathematical Background

Synopsis

This chapter provides the necessary mathematical background for understanding the

48

5.1. Graph Theory 49

The components of a graph are obviously disjoint, and hence form a partition of the graph.

Definition 5.11 (Connected Graph). A graph with exactly one component is called a connected

graph.

Definition 5.12 (Trees). A tree is an acyclic graph G(N ;E) in which one node nr has no prede-

cessors and every other node has exactly one predecessor. The node nr is called the root of the

tree. A set of trees is called a forest.

50 Chapter 5. Mathematical Background

a

b c

v

�� ��❄
❄❄

❄❄
❄❄

❄

OO

(a) Ga(N a;Ea)

w

c u

v

��⑧ ⑧
⑧ ⑧
⑧ ⑧
⑧ ⑧

OO
��

��⑧ ⑧
⑧ ⑧
⑧ ⑧
⑧ ⑧

(b) Gb(N b;Eb)

Figure 5.3: Two graphs

a w

b c u

v

�� ��❄
❄❄

❄❄
❄❄

❄

OO
��⑧ ⑧
⑧ ⑧
⑧ ⑧
⑧ ⑧

��

��⑧ ⑧
⑧ ⑧
⑧ ⑧
⑧ ⑧

Figure 5.4: Graph union

The example in Figure 5.3, has two nodes fc;vg and an edge (v;c) in common. If one graph had

instead had an edge (c;v), there would have been two edges (v;c) and (c;v) between nodes fc;vg

in the resulting graph.

If the two graphs being combined have no nodes in common, graph union still yields a single

5.1. Graph Theory 51

52 Chapter 5. Mathematical Background

Such a model is fine for ‘flat’ software architectures, but is not sufficient for true hierarchical

designs.

5.1.4 Hierarchical Graphs

The previous sections described standard ‘flat’ graphs, that is every node is just an element of

some set. In this section, we introduce the concept of hierarchical graphs or nested graphs. In

a hierarchical graph, a node may itself expand to contain further nodes and edges, and so on ad

infinitum.

a

w

x

✧ ✧ ✧

✮ ✮ ✮

✶ ✶ ✶
❁ ❁ ❁

❍ ❍ ❍
◗ ◗ ◗❳ ❳ ❳❢ ❢ ❢♠ ♠ ♠

✈ ✈ ✈
✂ ✂ ✂

✌ ✌ ✌

✕ ✕ ✕

✜ ✜
✜
✧✧
✧

✮✮
✮

✶✶✶

❁❁❁
❍❍❍ ◗◗◗ ❳❳❳ ❢❢❢ ♠♠♠

✈✈✈
✂✂✂
✌✌✌

✕✕✕

✜✜✜
y

z

b

''❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖❖

��✗

54 Chapter 5. Mathematical Background

pop

stack

my_stack

int push

main

5.2. Information Theory 55

56 Chapter 5. Mathematical Background

To make this clear, consider the transmission of the integer 2710; this has a binary code of

110112, and the length of this binary code is clearly 510 which in turn has a binary code of 1012.

Therefore, 2710

5.2. Information Theory 57

0

2

4

6

8

10

12

14

16

18

0 100 200 300 400 500 600 700 800 900 1000

le
ng

th
 (

bi
ts

)

integer value

(a) Moderate Integers

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16 18 20

le
ng

th
 (

bi
ts

)

integer value

(b) Small Integers

Figure 5.11: Graph of log�2

5.2.4 Length of Code Words with Known Probabilities

In Chapter 6, we will see that we need to find the length of a mess

58 Chapter 5. Mathematical Background

two nodes. For our purposes, an isolated node need not be described, since (by implication) it does

not contribute anything to the system, otherwise it would be connected to another node.

Hence in our case, we can estimate the minimum message length of a graph’s edge description,

for the edge (ne1
;ne2

) by

� ∑
e2E

(log2(Prne1
)+ log2(Prne2

))

In our extended model for complexity (see Section 6.2.3) we represent the endpoint of an

edge in a hierarchical graph by a sequence of node symbols. (How such a sequence of nodes

is determined and how its last element is detected is explained in Chapter 6.) To find the (par-

Chapter 6

Describing a Graph

Synopsis

This chapter presents our complexity measure, Ψ, in detail, explaining how it is cal-

culated and why it is a complexity measure. We also show that Ψ satisfies Weyuker’s

(1988) proposed property set for complexity measures.

In this chapter we describe our complexity measure, Ψ, in detail, and show that it satisfies Weyuker

(1988) proposed property set for complexity measures.

6.1 The Message Passing Metaphor

Our message passing paradigm is very simple. We imagine that we need to communicate the struc-

ture of a design graph between a transmitter and a receiver along a perfect transmission medium.

That is, the receiver receives exactly what is transmitted, without any errors, duplication, or data

loss. The receiver must be able to recreate an equivalent graph from the received message, plus

knowledge of the message’s structure.

We hypothesise that the length of the resultant message is a measure of the structural complex-

ity of the proposed design. Further, by application of Occam’s razor,1 a smaller message length

indicates a better design.

6.2 Ψ: The Complexity of a Design Graph

In this section we describe our proposed complexity measure. This is a recursive definition, so we

start by describing a simplified base case, and building upwards.

6.2.1 Describing the Edges in a Graph

In this section, we are going to develop a partial message for describing the edges in a standard

graph. We ignore (for now) issues of how this message might be decoded by the receiver. This is

only done to simplify the exposition, a decodable message will be covered in Section 6.2.2.

Given a multi-graph G�

(N ;E�

) with ξ nodes fn1; : : : ;nξg. A directed link between ni and n j

can be represented by the sequence P(i) P(j), where P

60

6.2. Ψ: The Complexity of a Design Graph 61

where di is the degree of node ni. The message describing the graph has 2E symbols. Therefore,

the probability of a node occurring in a message is the node’s degree divided by the sum of degree

of all nodes.

Hence, we can conclude that the message length of an arbitrary node ni in a message is:

� log2

�

di

D

�

Where di is the degree of node ni, and D is ∑i2N di. Therefore, the total length of a message

describing the structure of a multi-graph is

� ∑
i2N

di log2

�

di

D

�

(6.1)

We assume that 0� log2

�

0
x

�

= 0 for x > 0.

Such a (partial) message is sufficient to describe the edges in a multi-graph. This result holds

unchanged for a graph, G(N ;E).

6.2.1.1 Example: Chain Graph

To demonstrate the above, consider the small graph, shown in Figure 6.2. This graph consists of n

nodes arranged in a chain, such that, there is an edge from node 1 to node 2, node 2 to node 3, etc.

until finally node n�1 has an edge to node n, and node n has no other edges impinging on it.

1

2
((

62 Chapter 6. Describing a Graph

6.2.1.2 Example: Star Graph

Now, consider another small graph, shown in Figure 6.3. This graph consists of n nodes arranged

in a star-like configuration, such that, node n has edges to every other node, and the remaining

nodes (1; : : : ;n� 1) have no other edge connections dependencies. Note that the same result

would be achieved if the direction of every arrow was reversed.

n

1 2 : : : n�2 n�1
zz

6.2. Ψ: The Complexity of a Design Graph 63

to add one to the natural number being transmitted so that zero can be sent. Note that this function

is strictly greater than zero, for all positive integers, and is strictly monotonically increasing.5

Hence the length of a message describing a (multi-)graph is given by

log�2(E +1)� ∑
i2N

di log2

�

di

64 Chapter 6. Describing a Graph

6.2. Ψ: The Complexity of a Design Graph 65

66 Chapter 6. Describing a Graph

is an environmental object. Environmental objects can only be referenced from an object in the

current design tree, an environmental object can never reference an object in the design tree. This

modification should not distort message length comparisons as it uniformly increases all edges by

one bit, and we never change the number of edges in a design graph.

Hence our final model looks like:

Design Description Message

object description = object id +

jnodesj +

jobjectsj fobject description1 , : : : , object descriptionmg +

jedgesj fedge1, : : : , edgeeg

edge = point1 – env object point2

point = fobject idg* basic entity id

env object = 1 iff next object is an environmental object, 0 otherwise

Length of Full Design Description Message

The length of a message describing a general design using this encoding has the form:

length = ∑
m2M

log�2(Nm +1)+ log�2(N
0

m +1)+ log�2(Em +1)� ∑
n2N m

fn log2

�

fn

Fn

�

+Em

!

+1

(6.3)

Where M is the set of all modules (objects), Nm is the number of entities (objects + basic

entities) in module m, N
0

m is the number of objects in module m (Nm � N
0

m), Em is the number of

edges described in module m and N m is the set of entities in module m. fn is the frequency of

entity n in module m, which for basic entities is given by the degree of the corresponding node,

and for objects is the degree of the contracted node plus 1 and Fn = ∑n fn.

Length of Single Object Design Description Message

Hence for a design consisting of a single object, we have the following equation for its message

length

length = log�2(N +1)+ log�2(E +1)� ∑
i2N

di log2

�

di

2E

�

+E +C (6.4)

Where C = 1+ log�2 1, E is the number of edges, N is the number of nodes in the graph, di is the

degree of the node i.

6.3. A Complexity Measure? 67

6.3 A Complexity Measure?

Having defined a complexity measure, we should demonstrate, at least informally, that it captures

notions of coupling and cohesion. Further that the complexity measure permits some form of

trade-off between these two concepts. We will give some more complete examples of this in

Chapter 8. For now we will just use an intuitive model.

Consider a design consisting of 10 basic entities, and three objects arranged in a balanced

binary tree. Further, let the 10 basic entities form two highly-cohesive groups, with no (or very

little) coupling between the groups. Intuitively, it seems reasonable that each group should be

placed in a leaf node of the binary tree.

Now consider moving one basic entity from one group, L into the other R. The object -

description of the group L will get smaller, it contains fewer entities and fewer links. The

object description of the group R will get larger, it now contains more entities. Additionally,

the object description of the root-group T will get larger, it contains several links from L to

R. The original design has a complexity of 155 bits, whilst the second design has a complexity of

166 bits. Forming a single object results in a complexity of 172 bits.

68

70 Chapter 6. Describing a Graph

and

l̂ = log�2(N̂ +1)+ log�2(N
0

+1)+ log�2(E +1)� ∑
n2N

fn log2

�

fn

F

�

+E

The node is unconnected, so that all the terms in the above sum are unchanged, except log�2(N̂+1).

Since log�2 x is a strictly monotonically increasing function the length of the module’s description

must increase.

Theorem 6.4. Adding an additional object to a design graph, increases the design’s complexity.

Proof. Follows immediately from Theorem 6.3 since the node count in the encapsulating object

rises and the object count in the encapsulating object rises.

Theorem 6.5. Adding an additional node with degree at least 1 to a design graph, increases the

design’s complexity.

Proof. Obvious from proofs of Theorems 6.2 and 6.3.

W-Property 6.1. The measure must not assign the same number to all systems:

9p;q 2 S �Ψ(p) 6= Ψ(q)

Proof. Immediately follows from Theorems 6.2–6.5.

W-Property 6.2. There exist only a countable number of systems for a given measurement value.

The stated purpose of this axiom is to ‘strengthen’ the [previous] axiom, as violation

suggests that the measure is comparatively insensitive.

Shepperd and Ince (1993, p.68)

Proof. A graph, G(N ;E), consists of two countable sets, namely: nodes and edges. It follows im-

mediately that the number of graphs is countable since we have only countable unions of countable

sets.

W-Property 6.3. There are systems drawn from the same equivalence class:

9p;q 2 S �Ψ(p) = Ψ(q)

Proof. Our proof is by constructing two system with the same measure. Let p be an arbitrary

system with an underlying graph such that all nodes do not have identical degree. Let q have

exactly the same graph, but with the direction of each edge reversed. Since our complexity measure

6.4. Theoretical Validation 71

W-Property 6.5. The measure must be monotonic, wrt. adding components:

8p;q 2 S �Ψ(p)�Ψ(p�q) ^ Ψ(q)�Ψ(p�q)

Where � denotes the concatenation operation (see Section 5.1.6).

Proof. Our proof is by induction on the structure of the graph. Recall that design concatenation

is derived from graph union, which is in turn derived from set union. Therefore p � q has at

least as many nodes as max(
�

�N p

�

�

;

�

�N q

�

�

) and has at least as many edges as max(jEpj ;

�

�Eq

�

�

).

Hence by structural induction using Theorems 6.2–6.5, the design’s complexity cannot decrease,

as required.

This result holds, even if there are no links between the constituent designs p and q.

Corollary 6.3. The complexity of a design concatenated with itself has the same complexity as

the original:

8p 2 S �Ψ(p) = Ψ(p� p)

Proof. Immediately follows from the definition of design concatenation (see Section 5.1.6), since

for all sets X , X [X = X .

W-Property 6.6. Concatenation of a system r to another system must not always yield a constant

increment to the total complexity measure:

9p;q;r 2 S �Ψ(p) = Ψ(q) ^ Ψ(r � p) 6= Ψ(r �q)

Also:

9p;q;r 2 S �Ψ(p) = Ψ(q) ^ Ψ(p� r) 6= Ψ(q� r)

Proof. Since design concatenation is a commutative operation, we have p�q = q� p for all p and

q. From Corollary 6.3 concatenating a design with itself yields a design of the same complexity.

Hence let p and q be design graphs as in the proof of W-Property 6.3, and let r = p, then Ψ(p) =

Ψ(q) and Ψ(p� r) = Ψ(p) but Ψ(q� r) � Ψ(p� r) since q� r contains more edges than p and by

Theorem 6.2 this increase the design’s complexity, as required.

Actually all that is required is that p and r have nodes/edges in common, whilst q has nothing in

common with p.

W-Property 6.7. The measure must be sensitive to the ordering of the system components. Let ρ
be a permutation function, then:

9p 2 S �Ψ(p) 6= Ψ(ρ(p))

We interpret ordering to refer to moving entities around the hierarchical structure. For example

creating a new object or moving a basic entity from one object to another. Weyuker, was discussing

moving program fragments, and we regard moving entities as similar for designs.

Proof. See Section 6.3 for an example.

W-Property 6.8. The measure must be insensitive to renaming changes of system components.

Let τ be a renaming function, then:

8p 2 S �Ψ(p) = Ψ(τ(p

72 Chapter 6. Describing a Graph

W-Property 6.9. Module monotonicity

9p;q 2 S �Ψ(p)+Ψ(q)< Ψ(p�q)

Part III

Morpheus

73

Chapter 7

Morpheus: A Prototype System

Synopsis

This chapter describes both our extensions to HOOD for capturing a more detailed

description of the proposed software architecture and the implementation of our pro-

totype system, Morpheus , for improving designs. Morpheus compares designs based on

76 Chapter 7. Morpheus: A Prototype System

code linkage section. This new section contains information on the types and variables1 used by

the operation. The formal changes to the ODS’s syntax are documented in Appendix A.

It was also necessary to make an extension to HOOD’s semantics. We permitted the identifi-

cation of used operations in an operation’s definition to include constants as well as operations.

This could have been done by adding a further field to the existing ODS for operations. However,

since from a general semantic perspective there is little difference between a constant and a pro-

cedure, this seems a reasonable change. Additionally, not distinguishing these categories makes

mechanical collection easier; a point we shall return to shortly.

It may be objected that these changes impose more housekeepi

7.2. Implementation 77

78 Chapter 7. Morpheus: A Prototype System

choose to assume, for ease of construction, that the input was essentially error free. If a syntax

error is discovered an error message is output and Morpheus halts. Unfortunately,

7.2. Implementation 79

data_analysis (parse_tree)

begin

walk parse_tree constructing

7.2. Implementation 81

but a child object does not identify its parent. Fortunately, HOOD requires all object names to be

unique within a design tree. This means that as objects are seen, we can construct a table showing

the children (if any) of each object. Figure 7.4 shows the structure of the object structure table. On

completion of walking the parse tree, we can therefore identify the parent (if one exists) of each

object.

Object-Structure = Object-Structure-Entry-set

Object-Structure-Entry :: object-name : Object-Name

parent : Object-Name

children : Object-Name-set

siblings : Object-Name-set

Figure 7.4: Object Structure Table

This leaves us with two problems. Firstly, we may not have an object tree but rather an object

forest, and secondly, we do not know the identity of the root object. Both of these problems can

be overcome by creating a pseudo-object (called $top object$) and making its children, those

objects which do not have parents.

Entity-Tree = Entity-Tree-Node�

Entity-Tree-Node = Full-Name jEntity-Tree

Figure 7.5: Entity Tree

The entity tree (see Figure 7.5) can now be constructed from the object structure table. The

basic-entities can be inserted into the entity tree by scanning the symbol table, and placing each

basic-entity declared in a particular object into the corresponding place in the entity tree.

In the supplied design each object has a user-specified name. In principle it is easy to pass this

information into the Improvement Engine. However, the activity of the Improvement Engine will

create new objects and destroy some existing objects and move entities between objects. Thus

rendering the original object name misleading. It was therefore decided to ignore the supplied

object name.

7.2.3.4 Deriving the Linkage Information

The second major component of the graph for the Improvement Engine is the set of links. For

each entity these links show all the other entities upon which this entity directly depends. As the

parse tree is being walked an entity structure record is created for each entity as it is encountered.

Figure 7.2.3.4 shows the structure of the entity structure table.

Entity-Structure-Table = Entity-Details-set

Entity-Details :: full-name : Full-Name

kind : Entity-Kind

provides : Entities

requires : Entities

components : Entities

Entities = Full-Name-set

Figure 7.6: Entity Structure Table

At the very least each entity provides its own services. The components field is only really

used by objects and operation sets, since they are the only encapsulation entities in HOOD. The

requires field identifies only those other entities directly required by the current entity.

82 Chapter 7. Morpheus: A Prototype System

Linkage-Table = Entity
m
�! Depends-On

Entity = Full-Name

Depends-On = Full-Name-set

Figure 7.7: Linkage Table

Once no more changes to the set of entity details is required, construction of the graph’s linkage

information (see Figure 7.7) is easy. Just use the requires field of each entity detail record. No

data is generated for entities that have no dependencies, since its node has no outward edges in the

underlying graph.

7.2.3.5 Secondary Information

As we noted earlier, there are two minor information requirements due to the nature of HOOD and

the Improvement Engine.

Environmental-Objects = Objects

Variables = Entities

Objects = Object-Name-set

Entities = Full-Name-set

Figure 7.8: Secondary Information

A HOOD design must be closed and part of the design philosophy of HOOD is to permit the sep-

arate development of individual design components by independent designers (see HOOD HUM

(1996)). HOOD

7.3. Limitations 85

History-List = History-List-Entries�

History-List-Entries :: expanded : B

active-entry : Active-List-Entry

Figure 7.12: History List

of the best seen designs is kept. Newly generated designs are compared to the history list, and

86 Chapter 7. Morpheus: A Prototype System

7.3.2 Missing Information

As we have noted before Morpheus cannot handle partial designs or designs with missing inform-

ation. This problem has implications for the deployment of Morpheus in the early stages of design,

when its suggestions might be most useful.

It is unworthy of excellent men to lose hours like slaves in the labour of

calculation which could be relegated to anyone else if machines were used.

GOTTFRIED WILHELM VON LEIBNITZ (1646–1716)

German philosopher and mathematician

88 Chapter 8. Empirical Evidence in Support of Ψ

number Ψ under null final object structure see

of nodes

8.1. Initial Experiments 89

B1

B2

B3

B4

B5

A1

A2

A3

A4

A5

Figure 8.2: Grouping with 2 groups of 5 entities

90

8.1. Initial Experiments 91

B1

B2

B3

B4

B5

A1

A2

A3

A4

A5

Figure 8.4: No structure with 2 groups of 5 entities

92

8.1. Initial Experiments 93

B1

B2

B3

B4

B5

A1

A2

A3

94

8.1. Initial Experiments 95

96 Chapter 8. Empirical Evidence in Support of Ψ

B1

B2 B3 B4 B5

A1

A2

A3

A4

A5

Figure 8.11: Cohesion with 2 groups, one with 4 links

B1

B2B3 B4

A1

A2

A3

A4

A5

B5

Figure 8.12: Cohesion with 2 groups, one with 3 links

8.1. Initial Experiments 97

8.1. Initial Experiments 99

8.1.4 Increasing Coupling

Once again starting from the same base as the previous experiment, we wanted to study the effect

of increasing inter-object coupling. We did this by progressively adding links between the A and

B groups.

We did not want all the new links to go from one basic entity to another basic entity or this

would have resulted in a system with a few highly cohesive basic entities rather than just increasing

the links from A to B.

The results are shown in Table 8.3. The double line under the entry starting 5, is a reminder

that the linkage structure underwent a change. Between 0 and 5 (inclusive), we formed links from

group A to B, by just adding a link from Ai to Bi. However, after 5 we formed additional links

by adding links from Bi to Ai, the intention being to avoid just making B a sub-group of A. In

retrospect, this idea was correct in principle, but we would have been better to add links from Bi

to A6�i thus avoiding too much cohesion between specific basic entities.

number Ψ under null final object structure see

of links hypothesis Ψ figure

0 172.3 157.2 ((B1,B2,B3,B4,B5) A1,A2,A3,A4,A5) 8.16

1 179.8 160.8 as above 8.17

2 187.4 170.0 as above 8.18

3 195.2 178.9 as above 8.19

4 203.1 187.8 as above 8.20

5 211.0 196.5 as above 8.21

6 218.8 205.8 ((A1,A2,A3,A4,A5) (B1,B2,B3,B4,B5)) 8.22

7 226.5 213.8 as above 8.23

8 234. 225.9 (((A3,A4,A5,B3,B4,B5) A2,B2) A1,B1) 8.24

9 242.0 232.3 as above 8.25

10 249.7 238.7 as above 8.26

Table 8.3: Effect of Increasing Coupling between Groups

Looking at Table 8.3, we see that complexity rises as new inter-group links are added, as

expected. More interestingly, at 6 links, the two groups are formed into two ‘equal’ sub-objects,

which we speculate is caused by trade-offs on the complexity of adding a new object containing

6/7 edges versus the additional complexity of more links between the an encapsulated object and

100

8.1. Initial Experiments 101

B1

B2

B3

B4

B5

A1

A2

A3

A4

A5

Figure 8.18: Coupling with 2 groups, and 2 links between groups

B1

B2

B3

B4

B5

A1

A2

A3

A4

A5

102 Chapter 8. Empirical Evidence in Support of Ψ

B1

B2

B3

B4

B5

A1

A2

B2

B3

B4

104 Chapter 8. Empirical Evidence in Support of Ψ

A3

A4

A5

B3

B4

B5

A2

B2

A1

B1

106 Chapter 8. Empirical Evidence in Support of Ψ

8.2 A Small Example: Traffic Lights

8
.2

.
A

S
m

a
ll

E
xa

m
p
le:

T
ra

ffi
c

L
ig

h
ts

1
0
9

colour

1
1
0

C
h
a
p
ter

8
.

E
m

p
irica

l
E

vid
en

ce
in

S
u
p
p
o
rt

o
fΨ

coloursecond

string road latch present

other_road

ac_present bd_presentcurrent_green_pairelapsed

ac_sensors bd_sensors

tl.second

count

checkchange

read_sensorput_line

F
ig

u
re

8
.2

8
:

G
rap

h
o
f

fl
at

T
raffi

c
L

ig
h
t
d
esig

n
w

ith
o
u
t
env

iro
n
m

en
t

8
.2

.
A

S
m

a
ll

E
xa

m
p
le:

T
ra

ffi
c

L
ig

h
ts

1
1
1

coloursecond

stringroadlatch

8
.2

.
A

S
m

a
ll

E
xa

m
p
le:

T
ra

ffi
c

L
ig

h
ts

1
1
3

coloursecond

stringroad latch

present other_road

ac_present bd_presentcurrent_green_pair elapsed

ac_sensors bd_sensors

count

checkchange

tl.second

read_sensor put_line

F
ig

u
re

8
.3

1
:

G
rap

h
o
f

M
orpheus’s

T
raffi

c
L

ig
h
t
d
esig

n
w

ith
env

iro
n
m

en
t

8.3. TriviCalc - A System to Design 115

� The other interesting change at the module level was the splitting of the spreadsheet cal-

culation pad into two separate but equal objects, one responsible for validating potential

commands, the other for actually performing the required changes.

Much of the internal complexity of the calculation pad comes from the need to propagate

changes to dependent slots and to save the spreadsheet in a suitable order for later restora-

tion. By splitting the validation from the implementation, the mechanics for propagating

changes can be further encapsulated.

8.3.1 Improvement?

Full details of both the initial and post-processing modular structures are shown in Section B.3.

The original design had a complexity of 12038.9 bits, whilst Morpheus’s suggestion had a com-

plexity of 9618.8 bits, a saving of about 20 percent.

116 Chapter 8. Empirical Evidence in Support of Ψ

required. The editor would not require any changes and basic validation would remain unchanged

since it can already check for valid slot identities and slot containing strings rather than arithmeti-

cal expressions.

The calculation pad would need a look-up table for validation and despatch to the appro-

priate operation. However, the basic entry point for updating the calculation pad would remain

unchanged.

Chapter 9

Summary and Conclusion

Synopsis

In this chapter, we present a critical evaluation of this thesis and its contribution to

knowledge. Section 9.1 provides a brief summary of this thesis. Section 9.2 discusses

what this thesis has achieved, and how far its objectives have been met. Section 9.3

looks forward to future work, as a result of this research. Finally, Section 9.4 provides

a brief overall conclusion.

9.1 Summary of this Thesis

This thesis has studied the problem of providing an intelligent system to aid software designers

improve the quality of their designs. We have limited ourselves to the objective evaluation of a

design’s modular complexity. Little previous work has been done in producing systems for even

this limited objective.

Although there are clearly many other factors which influenc

118 Chapter 9. Summary and Conclusion

9.2 Evaluation

The previous section provided a brief summary of this thesis. In this section we shall look at how

well this work meets our original objective.

9.2.1 Achievements

There can be no doubt that we have created a prototype tool which takes in an architectural design

expressed in HOOD, and finds alternative designs with less complex structure. Complexity has

been defined in terms of the length of a message describing the structure of the design. The use of

message length as a measure of complexity is founded on Kolmogorov complexity, which gives

us an objective basis for comparing the structural complexity of designs.

We have shown that our complexity metric satisfies criteria that other researchers have sug-

gested are good properties for complexity measures. This has been rigorously proved for the

9.3. Further Work 119

� A better understanding of the relationship between coupling and cohesion. Particularly in

situations were the worst forms of coupling are not permitted.

As part of the development of Morpheus , we have identified a number of deficiencies in HOOD

as currently defined. Some of these deficiencies we have addressed in our extensions to HOOD.

The others (e.g., nested operations) would be quite simple to add, but require further consideration

because they alter what may be regarded as the philosophy of HOOD.

Although Morpheus is based on HOOD, in principle there is no reason why (with suitable

120 Chapter 9. Summary and Conclusion

� Alternative theories for modelling a hierarchical graph need to be investigated, and their

impact on message lengths determined. This thesis assumes a single class of theories for

describing a hierarchical graph. There are undoubtedly others, some of which may yield

smaller message lengths and thus more closely approximate the true3 Kolmogorov Com-

plexity of the underlying design.

� Providing a clearer method for reporting Morpheus’s results, in a manner readily understand-

able to the end-user. Morpheus’s output is currently rather cryptic, and not obviously related

to the initial design; particularly as module names are not preserved. To make Morpheus

acceptable in an industrial setting, a simple to understand output is required. Even better

would be to reverse engineer Morpheus’s output into a design notation; ideally using the

same notation as the original design.

� Integrating Morpheus into other CASE tools. Morpheus is really intended as the back-end of

a CASE tool, and not for direct use by a designer. We need to merge Morpheus into a CASE

tool so that it has access to other facilities (in particular a database for storing large designs)

and supports industrial use.

9.4 Contribution of This Thesis

The research reported in this thesis has developed a metric for measuring the absolute complexity

of a software design’s architecture. Complexity is measured in an objective manner and does not

122

124 Bibliography

Halstead, M. H. (1977). Elements of Software Science. Elsevier North-Holland, New York, NY.

Hardy, G. H. (1947). A Mathematican’s Apology. Cambridge University Press.

Harrison, W. (1992). An entropy-based measure of software complexity. IEEE Transactions on

Software Engineering, 18(11):1025–1029.

Harrison, W. and Ossher, H. (1993). Subject-oriented programming (a critique of pure objects).

In OOPSLA ’93: Eightth annual conference on Object-Oriented Programming Systems, Lan-

guages and Applications, pages 411–428, Washington, DC. ACM Press. published in ACM

SIGPLAN Notices 28(10).

Henry, S. and Kafura, D. (1993). The evaluation of software systems’ structure using quantitative

software metrics. In Shepperd, M. J., editor, Software Engineering Metrics, Volume 1: Measures

and Validations, McGraw-Hill international series in software engineering, chapter 6, pages 99–

111. McGraw-Hill Book Company, Maidenhead, England. Reprinted from Software Practice

and Experience, 14(6); 561–573, 1984.

Hoare, C. A. R. (1985). Communicating Sequential Processes. Prentice-Hall.

HOOD HRM (1995). HOOD Reference Manual, Release 4. HOOD Technical Group. HRM4–

125

Khoshgoftaar, T. M. and Allen, E. B. (1994). Applications of information theory to software

engineering measurement. Software Quality Journal, 3(2):79–103.

Koutsofios, E. and North, S. C. (1994). Editing graphs with dotty. AT&T Bell Laboratories,

Murray Hill, NJ.

Laventhol, J. (1987). Programming in POP-11. Blackwell Scientific Publications Ltd.

Lew, K. S., Dillon, T. S., and Forward, K. E. (1988). Software complexity and its impact on

software reliability. IEEE Transactions on Software Engineering, 14(11):1645–1655.

Li, M. and Vitányi, P. (1993). An Introduction to Kolmogorov Complexity and its Applications.

Texts and Monographs in Computer Science. Springer-Verlag, New York, NY.

Li, M. and Vitányi, P. (1997). An Introduction to Kolmogorov Complexity and its Applications.

Graduate texts in Computer Science. Springer-Verlag, New York, NY, 2nd edition.

Listov, B. and Guttag, J. (1986). Abstraction and Specification in Program Development, pages

433–444. The MIT Press, Cambridge, MA.

Lor, K. W. E. and Berry, D. M. (1991). Automatic synthesis of SARA design models from system

requirements. IEEE Transactions on Software Engineering, 17(12):1229–1240.

MacKay, D. J. C. (1997). Information theory, pattern recognition and neural networks. forthcom-

ing, available in http://wol.ra.phy.cam.ac.uk/mackay/itprnn.

Marca, D. A. and McGowan, C. L. (1988). SADT—Structured Analysis and Design Technique.

McGraw-Hill.

MASCOT (1987). The Official Handbook of MASCOT: Version 3.1. Her Majesty’s Stationery

Office, London, England. Joint IECCA and MUF Committee on MASCOT.

McCabe, T. J. (1976). A software complexity measure. IEEE Transactions on Software Engineer-

ing, 2(6):308–320.

McCabe, T. J. and Butler, C. W. (1989). Design complexity measurements and testing. Commu-

nications of the ACM, 32(12):1415–1425.

126 Bibliography

Oliver, J. J. and Hand, D. J. (1994). Introduction to minimum encoding inference. Technical

Report 4–94, Department of Statistics, Open University, England. revised Dec. 1996.

Orr, K. T. (1971). Structured System Development. Yourdon Press, New York, NY.

Page-Jones, M. (1988). The Practical Guide to Structured Systems Design. Prentice-Hall, Engle-

wood Cliffs, NJ, 2nd edition.

Page-Jones, M. (1992). Comparing techniques by means of encapsulation and connascence. Com-

munications of the ACM, 35(9):147–151.

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules. Communi-

cations of the ACM, 15(12):1053–1058.

Parnas, D. L. (1997). Software engineering: An unconsummated marriage. Communications of

the ACM, 40(9):128.

Popper, K. R. (1968). The Logic of Scientific Discovery. Harper and Row, New York, NY.

Pressman, R. S. (1992). Software Engineering: A Practitioner’s Approach. McGraw-Hill Inc.,

New York, NY, 3rd edition.

Rayward-Smith, V. J. (1983).

127

Shepperd, M. J. and Ince, D. C. (1993). Derivation and Validation of Software Metrics. The

International Series of Monographs on Computer Science. Clarendon Press, Oxford, England.

Simon, H. A. (1973). The structure of ill structured problems. Artifical Intelligence, 4:181–200.

Simon, H. A. (1976). Administrative Behaviour. The Free Press, New York, NY, 3rd edition.

Simon, H. A. (1981). The Sciences of the Artifical. The MIT Press, Cambridge, MA, 2nd edition.

Spivey, J. M. (1989). The Z Notation: A Reference Manual. Prentice-Hall, Hemel Hempstead,

England.

Stroustrup, B. (1994). The C++ Programming Language. Addison-Wesley Publishing Company,

Reading, MA, 2nd edition.

Thornton, C. J. and du Boulay, B. (1992).

Appendix A

Augmented HOOD

This appendix presents the changes to HOOD’s Standard Interchange Format, as documented in

Delatte et al. (1993, appendix D). The syntax is presented using BNF notation as described in

Delatte et al. (1993). Meta-comments are delimited by ‘/*’ and ‘*/’. Numbers in round brackets

refer to the syntax phrases defined in Delatte et al..

A.1 Changes to Existing Syntax

A.1.1 Pseudo Code

pseudo code section ::= /* (29) */

PSEUDO CODE

[code linkage section]

[free text]

j PSEUDO CODE

NONE

A.2 Pseudo Code Enhancements

code linkage section ::=

OPERATION REQUIREMENTS

[requires type section]

[reads from section]

[writes to section]

END OPERATION REQUIREMENTS

j OPERATION REQUIREMENTS

NONE

requires type section ::=

REQUIRES TYPE

type reference semi colon

ftype reference semi colong

j REQUIRES TYPE

NONE

reads from

132 Appendix B. TriviCalc - An Example

Elements of the storage area may be of three kinds: blank, value or comment.

� A blank line has no value.

� A comment is a string of up to eight characters.9

� When a comment occupies an element of storage, it has no effect on any other element of

storage.

A value is a floating point number.10 Values in storage may be related to each other by multipli-

cation, division, addition and subtraction. These relations are set by the user and may be changed

at any time. Some values in storage will be entered by the user as constants or parameters; others

will be derived as a result of one of the relations mentioned a

B.1. TriviCalc Reference Manual 133

property that if they were executed in sequence, beginning with a blank storage area, they

would generate the storage area in effect at the time the save was done.15

LOAD;FILE:name; The current state of the storage area is discarded and then reloaded based on

the contents of the file named name.tc. The file is assumed to be in the format produced by

the SAVE command.

STORE-COMMENT;WITH:string;AT:slot-address; The comment string is stored in the element of

storage labelled by slot-address.

STORE-VALUE;WITH:number;AT:slot-address; The value number16 is stored in the element la-

belled by slot-address. After this command has been executed, this element will not depend

on any other elements.

BLANK;SLOT:slot-address; The element labelled by slot-address becomes blank.

QUIT; The execution of TriviCalc is terminated and control is returned to the executive.

Movement Commands

134 Appendix B. TriviCalc - An Example

SUBTRACT or � The element of storage labelled slot3 is related to the other two elements as

(slot1�slot2).

MULTIPLY or ? The element of storage labelled slot3 is related to the other two elements as

(slot1?slot2).

DIVIDE or / The element of storage labelled slot3 is related to the other two elements as

(slot1/slot2).20

The Working-Area Editor

The working-area editor is a simple modeless editor with special functions to simplify the input

of commands to the TriviCalc command processor. The editor maintains a cursor in the working

area. Every keystroke is considered to be a command to the editor. All commands are atomic; they

are either processed to completion immediately or halt in error, after doing nothing except possibly

displaying an error message. Some keystrokes denote textual values (the characters, numerals and

punctuation keys). The command that is run by typing any of these keystrokes merely inserts the

key’s textual value at the cursor.21 These are known as textual input commands.

Other keystrokes do not denote textual values. These are special keys (such the carriage-return

or delete), or are typed by holding down the CONTROL key and pressing some other key. These

non textual keystrokes are interpreted by the editor as commands that affect the text in the working

area. A brief description of the nontextual commands follows.

CONTROL L Move the cursor to the left one position.

CONTROL R Move the cursor to the right one position.

CONTROL D Delete the character at the cursor, if there is one.

DELETE Delete the character to the left of the cursor, if there is one.

CONTROL A Operator Adjust. If the working area is of the form

slot1 op slot2

where op is one of the characters ?, /, � or + and slot1, slot2 are strings, the contents of the

working area are replaced with

op;VALUE1:slot1;VALUE2:slot2;GIVING:%;

Otherwise, if the contents of the working area represent a valid numerical value, the working

area is interpreted as number and its contents replaced by

STORE-VALUE;WITH:number;AT:%;

Otherwise, the working area is interpreted as string and its contents are replaced by

STORE-COMMENT;WITH:string;AT:%;

Finally, the effect of a CONTROL K command with the cursor at the beginning of the

working area, followed by a CONTROL E command is simulated. The effect of this is to

replace the % character with the address of the current slot.

20What happens if the value of slot2

B.2. Original TriviCalc design 135

CONTROL K Search from the position to the right for a %, wrapping around to the beginning

of the working area if the end of the working area is reached. If a % is found, delete it and

leave the cursor at its position. If none is found, do nothing.22

CONTROL E The address of the current slot in the storage area is inserte

136 Appendix B. TriviCalc - An Example

close_file (channel : IN channel) ;

matches (pattern : IN list ; datum : IN list) RETURN boolean ;

parse_string (text : IN string) RETURN list ;

isstring (text : IN string) RETURN boolean ;

read_line (channel : IN channel) RETURN string ;

get_input_char (channel : IN channel) RETURN character ;

write_line (channel : IN channel ; text : IN string) ;

sysexit ;

END_OBJECT pop_11

OBJECT trivicalc IS PASSIVE

PROVIDED_INTERFACE

OPERATIONS

main_program ;

INTERNALS

OBJECTS

cli ;

data_types ;

dm ;

em ;

sa ;

wae ;

OPERATIONS

main_program

IMPLEMENTED_BY cli.main_program ;

END_OBJECT trivicalc

OBJECT wae IS PASSIVE

PROVIDED_INTERFACE

OPERATIONS

editor ;

get_cs RETURN slot_id ;

init_cl ;

init_cs ;

is_macro_name (id : IN string) RETURN boolean ;

recall_all_macros RETURN list_strings ;

set_cs (slot : IN slot_id) ;

store_macro (id : IN integer ; text : IN string) ;

REQUIRED_INTERFACE

OBJECT cli

OPERATIONS

command_despatcher (command : IN string) RETURN validity

OBJECT dm

OPERATIONS

delete_char ;

delete_char_at_left ;

delete_line ;

display_cl_line (text : IN string) ;

insert_char (char : IN character) ;

insert_string (text : IN string) ;

move_cs (old_cs : IN slot_id ; cs : IN slot_id) ;

position_cl_cursor (cursor : IN cursor_position) ;

ring_bell ;

B.2. Original TriviCalc design 137

set_cs (slot : IN slot_id) ;

OBJECT em

OPERATIONS

escape_seen ;

OBJECT sa

OPERATIONS

get_contents (slot : IN slot_id) RETURN content ;

INTERNALS

OBJECTS

cl ; ;;; command line

cp ; ;;; command processor

cs ; ;;; current slot

il ; ;;; internal locations

OPERATIONS

editor

IMPLEMENTED_BY cp.editor ;

init_cl

IMPLEMENTED_BY cl.init_cl ;

init_cs

IMPLEMENTED_BY cs.init_cs ;

recall_all_macros RETURN list_strings

IMPLEMENTED_BY il.recall_all_macros RETURN list_strings ;

set_cs (slot : IN slot_id)

IMPLEMENTED_BY cs.set_cs (slot : IN slot_id) ;

get_cs RETURN slot_id

IMPLEMENTED_BY cs.get_cs RETURN slot_id ;

is_macro_name (id : IN string) RETURN boolean

IMPLEMENTED_BY il.is_macro_name

(id : IN string) RETURN boolean ;

store_macro (id : IN integer ; text : IN string)

IMPLEMENTED_BY il.store_macro (id : IN integer ;

text : IN string) ;

END_OBJECT wae

OBJECT cs IS PASSIVE

PROVIDED_INTERFACE

OPERATIONS

get_cs RETURN slot_id ;

get_cs_content RETURN content ;

init_cs ;

move_cs_down ;

move_cs_left ;

move_cs_right ;

move_cs_up ;

set_cs (slot : IN slot_id) ;

REQUIRED_INTERFACE

OBJECT dm

OPERATIONS

move_cs (old_cs : IN slot_id ; cs : IN slot_id) ;

set_cs (slot : IN slot_id) ;

OBJECT sa

OPERATIONS

get_contents (slot : IN slot_id) RETURN content ;

INTERNALS

138 Appendix B. TriviCalc - An Example

OPERATIONS

get_cs RETURN slot_id ;

get_cs_content RETURN content ;

init_cs ;

move_cs_down ;

move_cs_left ;

move_cs_right ;

move_cs_up ;

set_cs (slot : IN slot_id) ;

DATA

current_slot : slot_id ;

OPERATION_CONTROL_STRUCTURES

OPERATION move_cs_up

USED_OPERATIONS

dm.move_cs (old_cs : IN slot_id ; cs : IN slot_id) ;

min_row ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

current_slot ;

END_OPERATION_REQUIREMENTS

END_OPERATION move_cs_up

OPERATION move_cs_down

USED_OPERATIONS

dm.move_cs (old_cs : IN slot_id ; cs : IN slot_id) ;

max_row ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

current_slot ;

END_OPERATION_REQUIREMENTS

END_OPERATION move_cs_down

OPERATION move_cs_left

USED_OPERATIONS

dm.move_cs (old_cs : IN slot_id ; cs : IN slot_id) ;

min_column ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

current_slot ;

END_OPERATION_REQUIREMENTS

END_OPERATION move_cs_left

OPERATION move_cs_right

USED_OPERATIONS

dm.move_cs (old_cs : IN slot_id ; cs : IN slot_id) ;

max_column ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

current_slot ;

END_OPERATION_REQUIREMENTS

END_OPERATION move_cs_right

B.2. Original TriviCalc design 139

OPERATION get_cs RETURN slot_id

PSEUDO_CODE

OPERATION_REQUIREMENTS

READS_FROM

current_slot ;

END_OPERATION_REQUIREMENTS

END_OPERATION

140 Appendix B. TriviCalc - An Example

REQUIRED_INTERFACE

OBJECT dm

OPERATIONS

delete_char ;

delete_char_at_left ;

delete_line ;

display_cl_line (text : IN string) ;

insert_char (char : IN character) ;

insert_string (text : IN string) ;

position_cl_cursor (cursor : IN cursor_position) ;

ring_bell ;

INTERNALS

CONSTANTS

max_cursor : integer ;

max_length : integer ;

min_cursor : integer ;

min_length : integer ;

OPERATIONS

cursor_left ;

cursor_right ;

delete_char ;

delete_char_left ;

delete_line ;

get_cl RETURN string ;

init_cl ;

insert_char (char : IN character) ;

insert_string (text : IN string) ;

locate_sol ;

replace_percent RETURN validity ;

DATA

cursor : integer ;

eos : integer ;

line : string ;

OPERATION_CONTROL_STRUCTURES

OPERATION cursor_left

USED_OPERATIONS

dm.position_cl_cursor (cursor : IN cursor_position) ;

min_cursor ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

cursor ;

END_OPERATION_REQUIREMENTS

END_OPERATION cursor_left

OPERATION cursor_right

USED_OPERATIONS

dm.position_cl_cursor (cursor : IN cursor_position) ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

READS_FROM

eos ;

WRITES_TO

cursor ;

B.2. Original TriviCalc design 141

END_OPERATION_REQUIREMENTS

END_OPERATION cursor_right

OPERATION insert_char (char : IN character)

USED_OPERATIONS

dm.insert_char (char : IN character) ;

dm.ring_bell ;

max_length ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

cursor ;

eos ;

line ;

END_OPERATION_REQUIREMENTS

END_OPERATION insert_char

OPERATION insert_string (text : IN string)

USED_OPERATIONS

dm.position_cl_cursor (cursor : IN cursor_position) ;

dm.display_cl_line (text : IN string) ;

dm.ring_bell ;

max_length ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

cursor ;

eos ;

line ;

END_OPERATION_REQUIREMENTS

END_OPERATION insert_string

OPERATION delete_char

USED_OPERATIONS

dm.delete_char ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

READS_FROM

cursor ;

WRITES_TO

eos ;

line ;

END_OPERATION_REQUIREMENTS

END_OPERATION delete_char

OPERATION delete_char_left

USED_OPERATIONS

dm.delete_char_at_left ;

min_cursor ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

cursor ;

eos ;

line ;

END_OPERATION_REQUIREMENTS

END_OPERATION delete_char_left

142 Appendix B. TriviCalc - An Example

OPERATION delete_line

USED_OPERATIONS

dm.delete_line ;

min_cursor ;

min_length ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

cursor ;

eos ;

END_OPERATION_REQUIREMENTS

END_OPERATION delete_line

OPERATION replace_percent RETURN validity

USED_OPERATIONS

dm.position_cl_cursor (cursor : IN cursor_position) ;

delete_char ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

string ;

boolean ;

READS_FROM

cursor ;

eos ;

line ;

END_OPERATION_REQUIREMENTS

END_OPERATION replace_percent

OPERATION locate_sol

USED_OPERATIONS

dm.position_cl_cursor (cursor : IN cursor_position) ;

min_cursor ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

cursor ;

END_OPERATION_REQUIREMENTS

END_OPERATION locate_sol

OPERATION get_cl RETURN string

USED_OPERATIONS

min_length ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

READS_FROM

cursor ;

eos ;

line ;

END_OPERATION_REQUIREMENTS

END_OPERATION get_cl

OPERATION init_cl

USED_OPERATIONS

delete_line ;

END_OPERATION init_cl

END_OBJECT cl

B.2. Original TriviCalc design 143

OBJECT il IS PASSIVE

PROVIDED_INTERFACE

CONSTANTS

old_cl : integer ;

OPERATIONS

is_macro_name (id : IN string) RETURN boolean ;

store_macro (id : IN integer ; text : IN string) ;

recall_macro (id : IN integer) RETURN string ;

INTERNALS

CONSTANTS

max_macro : integer ;

min_macro : integer ;

old_cl : integer ;

OPERATIONS

store_macro (id : IN integer ; text : IN string) ;

recall_macro (id : IN integer) RETURN string ;

recall_all_macros RETURN list_strings ;

is_macro_name (id : IN string) RETURN boolean ;

init_il ;

DATA

macros : string ;

OPERATION_CONTROL_STRUCTURES

OPERATION store_macro (id : IN integer ; text : IN string)

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

macros ;

END_OPERATION_REQUIREMENTS

END_OPERATION store_macro

OPERATION recall_macro (id : IN integer) RETURN string

PSEUDO_CODE

OPERATION_REQUIREMENTS

READS_FROM

macros ;

END_OPERATION_REQUIREMENTS

END_OPERATION recall_macro

OPERATION recall_all_macros RETURN list_strings

USED_OPERATIONS

max_macro ;

min_macro ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

READS_FROM

macros ;

END_OPERATION_REQUIREMENTS

END_OPERATION recall_all_macros

OPERATION is_macro_name (id : IN string) RETURN boolean

USED_OPERATIONS

max_macro ;

min_macro ;

END_OPERATION is_macro_name

144 Appendix B. TriviCalc - An Example

OPERATION init_il

USED_OPERATIONS

max_macro ;

min_macro ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

macros ;

END_OPERATION_REQUIREMENTS

END_OPERATION init_il

END_OBJECT il

OBJECT cp IS PASSIVE

PROVIDED_INTERFACE

OPERATIONS

editor ;

REQUIRED_INTERFACE

OBJECT cli

OPERATIONS

command_despatcher (command : IN string) RETURN validity

INTERNALS

OBJECTS

editor ; ;;; main editor

ccp ; ;;; Control Character Processing

OPERATIONS

editor

IMPLEMENTED_BY editor.editor ;

END_OBJECT cp

OBJECT editor IS PASSIVE

PROVIDED_INTERFACE

OPERATIONS

editor ;

REQUIRED_INTERFACE

OBJECT ccp

OPERATIONS

process_control_char (char : IN character) ;

is_control_char (char : IN character) RETURN boolean ;

OBJECT dm

OPERATIONS

ring_bell ;

OBJECT em

OPERATIONS

escape_seen ;

OBJECT pop_11

OPERATIONS

get_input_char (channel : IN channel) RETURN character ;

open (file_name : IN string ; mode : IN string) RETURN channel ;

close_file (channel : IN channel) ;

INTERNALS

B.2. Original TriviCalc design 145

OPERATIONS

editor ;

get_char RETURN character

146 Appendix B. TriviCalc - An Example

channel ;

END_OPERATION_REQUIREMENTS

END_OPERATION term_cp

END_OBJECT editor

OBJECT ccp IS PASSIVE

PROVIDED_INTERFACE

OPERATIONS

process_control_char (char : IN character) ;

is_control_char (char : IN character) RETURN boolean ;

REQUIRED_INTERFACE

OBJECT cl

OPERATIONS

cursor_left ;

cursor_right ;

get_cl RETURN string ;

delete_line ;

delete_char ;

delete_char_left ;

insert_string (text : IN string) ;

locate_sol ;

replace_percent RETURN validity ;

OBJECT cs

OPERATIONS

move_cs_down ;

move_cs_left ;

move_cs_edsa _cs_left

OBJEr698Ee_cs_edsa _cs_left:;

B.2. Original TriviCalc design 147

CONSTANTS

despatch_table : pop_11.property_table ;

OPERATIONS

ccp_adjust ;

ccp_cli ;

ccp_cli_keep ;

ccp_delete_char ;

ccp_delete_char_left ;

ccp_delete_line ;

ccp_get_cs ;

ccp_get_cs_content ;

ccp_recall_macro ;

ccp_replace_percent ;

ccp_store_macro ;

is_control_char (char : IN character) RETURN boolean ;

obey_cl RETURN validity ;

process_control_char (char : IN character) ;

replace_cl (text : IN string) ;

save_cl ;

OPERATION_CONTROL_STRUCTURES

OPERATION is_control_char (char : IN character) RETURN boolean

USED_OPERATIONS

despatch_table ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

pop_11.property_table ;

END_OPERATION_REQUIREMENTS

END_OPERATION is_control_char

OPERATION process_control_char (char : IN character)

USED_OPERATIONS

despatch_table ;

ccp_adjust ;

ccp_cli ;

ccp_cli_keep ;

ccp_delete_char ;

ccp_delete_char_left ;

ccp_delete_line ;

ccp_get_cs ;

ccp_get_cs_content ;

ccp_recall_macro ;

ccp_replace_percent ;

ccp_store_macro ;

cl.cursor_left ;

cl.cursor_right ;

cs.move_cs_down ;

cs.move_cs_left ;

cs.move_cs_right ;

cs.move_cs_up ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

pop_11.property_table ;

END_OPERATION_REQUIREMENTS

END_OPERATION process_control_char

148 Appendix B. TriviCalc - An Example

OPERATION save_cl

USED_OPERATIONS

il.store_macro (id : IN integer ; text : IN string) ;

il.old_cl ;

cl.get_cl RETURN string ;

END_OPERATION save_cl

OPERATION obey_cl RETURN validity

USED_OPERATIONS

cl.get_cl RETURN string ;

B.2. Original TriviCalc design 149

cs.get_cs RETURN slot_id ;

em.report_error (text : IN string) ;

sa.is_comment (text : IN string) RETURN boolean ;

sa.is_float (text : IN string) RETURN boolean ;

sa.is_operation (text : IN string) RETURN boolean ;

sa.is_slot (text : IN string) RETURN boolean ;

pop_11.matches (pattern : IN list ;

datum : IN list) RETURN boolean ;

replace_cl (text : IN string) ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

float ;

operation_math ;

s_string ;

END_OPERATION_REQUIREMENTS

END_OPERATION ccp_adjust

OPERATION ccp_replace_percent

USED_OPERATIONS

cl.replace_percent:

150 Appendix B. TriviCalc - An Example

END_OBJECT ccp

OBJECT cli IS PASSIVE

PROVIDED_INTERFACE

OPERATIONS

command_despatcher (command : IN string) RETURN validity

main_program ;

REQUIRED_INTERFACE

OBJECT dm

OPERATIONS

init_dm ;

OBJECT em

OPERATIONS

init_em ;

report_error (text : IN string) ;

OBJECT sa

OPERATIONS

init_sa ;

is_comment (text : IN string) RETURN boolean ;

is_float (text : IN string) RETURN boolean ;

is_operation (text : IN string) RETURN boolean ;

is_slot (text : IN string) RETURN boolean ;

save_sa RETURN list_strings ;

set_slot (slot : IN slot_id ;

value : IN content) RETURN validity ;

OBJECT wae

OPERATIONS

editor ;

get_cs RETURN slot_id ;

init_cl ;

B.2. Original TriviCalc design 151

set_current_slot (command : IN

152 Appendix B. TriviCalc - An Example

154 Appendix B. TriviCalc - An Example

END_OPERATION reinitialise_system

OPERATION main_program

USED_OPERATIONS

em.init_em ;

reinitialise_system ;

wae.editor ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

load_in_progress ;

END_OPERATION_REQUIREMENTS

END_OPERATION main_program

END_OBJECT cli

OBJECT sa IS PASSIVE

PROVIDED_INTERFACE

OPERATIONS

get_contents (slot : IN slot_id) RETURN content ;

init_sa ;

is_comment (text : IN string) RETURN boolean ;

is_float (text : IN string) RETURN boolean ;

is_operation (text : IN string) RETURN boolean ;

is_slot (text : IN string) RETURN boolean ;

save_sa RETURN list_strings ;

set_slot (slot : IN slot_id ; value : IN content)

RETURN validity ;

REQUIRED_INTERFACE

OBJECT dm

OPERATIONS

display_value (slot : IN slot_id) ;

OBJECT em

OPERATIONS

report_error (text : IN string) ;

INTERNALS

CONSTANTS

blank : slot_type ;

comment : slot_type ;

expression : slot_type ;

float : slot_type ;

OPERATIONS

get_contents (slot : IN slot_id) RETURN content ;

init_sa ;

is_comment (text : IN string) RETURN boolean ;

is_float (text : IN string) RETURN boolean ;

is_operation (text : IN string) RETURN boolean ;

is_slot (text : IN string) RETURN boolean ;

save_sa RETURN list_strings ;

set_slot (slot : IN slot_id ;

value : IN content) RETURN validity ;

blank (slot : IN slot_id) ;

address (slot : IN slot_id) RETURN slots_index ;

create_sa ;

create_slot (column : IN column_position ;

B.2. Original TriviCalc design 155

row : IN row_position) RETURN a_slot ;

add_successor (slot : IN slot_id ; to_slot : IN slot_id) ;

remove_successor (slot : IN slot_id ; from_slot : IN slot_id) ;

list_successors (slot : IN slot_id) RETURN list_slot_ids ;

is_successor (slot : IN slot_id ;

of_slot : IN slot_id) RETURN boolean ;

complete_update (slot : IN slot_id ; success : IN boolean) ;

display_value (slot : IN slot_id) ;

depth_first_search (slot : IN slot_id) RETURN slot_id ;

update_order (slot : IN slot_id) RETURN list_slot_ids ;

update_slots (slots : IN list_slot_ids) RETURN validity ;

evaluate (slot : IN slot_id) RETURN full_value ;

is_slot_arithmetic (slot : IN slot_id) RETURN boolean ;

is_slot_float (slot : IN slot_id) RETURN boolean ;

is_slot_blank (slot : IN slot_id) RETURN boolean ;

is_slot_comment (slot : IN slot_id) RETURN boolean ;

is_slot_expression (slot : IN slot_id) RETURN boolean ;

get_value (slot : IN slot_id ;

new_value : IN boolean) RETURN value ;

DATA

slots : slot_array ;

stack : list_slot_ids ;

156 Appendix B. TriviCalc - An Example

blank (slot : IN slot_id) ;

create_sa ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

row_position ;

column_position ;

END_OPERATION_REQUIREMENTS

END_OPERATION init_sa

OPERATION create_sa

USED_OPERATIONS

create_slot (column : IN column_position ;

row : IN row_position) RETURN a_slot ;

min_letter ;

max_letter ;

min_row ;

max_row ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

slot_id ;

WRITES_TO

slots ;

END_OPERATION_REQUIREMENTS

END_OPERATION create_sa

OPERATION create_slot (column : IN column_position ;

row : IN row_position) RETURN a_slot

USED_OPERATIONS

blank ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

boolean ;

list ;

slot_type ;

END_OPERATION_REQUIREMENTS

END_OPERATION create_slot

OPERATION add_successor (slot : IN slot_id ; to_slot : IN slot_id)

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

list ;

list_slot_ids ;

WRITES_TO

slots ;

END_OPERATION_REQUIREMENTS

END_OPERATION add_successor

OPERATION remove_successor (slot : IN slot_id ;

from_slot : IN slot_id)

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

list ;

list_slot_ids ;

B.2. Original TriviCalc design 157

WRITES_TO

slots ;

END_OPERATION_REQUIREMENTS

END_OPERATION remove_successor

OPERATION list_successors (slot : IN slot_id) RETURN list_slot_ids

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

list ;

READS_FROM

slots ;

END_OPERATION_REQUIREMENTS

END_OPERATION list_successors

OPERATION is_successor (slot : IN slot_id ;

of_slot : IN slot_id) RETURN boolean

USED_OPERATIONS

list_successors (slot : IN slot_id

158 Appendix B. TriviCalc - An Example

WRITES_TO

stack ;

END_OPERATION_REQUIREMENTS

END_OPERATION depth_first_search

OPERATION update_order (slot : IN slot_id) RETURN list_slot_ids

USED_OPERATIONS

address (slot : IN slot_id) RETURN slots_index ;

depth_first_search (slot : IN slot_id) RETURN slot_id ;

list_successors (slot : IN slot_id) RETURN list_slot_ids ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

B.2. Original TriviCalc design 159

address (slot : IN slot_id) RETURN slots_index ;

blank ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

a_slot ;

slot_type ;

READS_FROM

slots ;

END_OPERATION_REQUIREMENTS

END_OPERATION is_slot_blank

OPERATION is_slot_comment (slot : IN slot_id) RETURN boolean

USED_OPERATIONS

address (slot : IN slot_id) RETURN slots_index ;

comment ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

a_slot ;

slot_type ;

READS_FROM

slots ;

END_OPERATION_REQUIREMENTS

END_OPERATION is_slot_comment

OPERATION is_slot_float (slot : IN slot_id) RETURN boolean

USED_OPERATIONS

address (slot : IN slot_id) RETURN slots_index ;

float ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

a_slot ;

slot_type ;

READS_FROM

slots ;

END_OPERATION_REQUIREMENTS

END_OPERATION is_slot_float

OPERATION is_slot_expression (slot : IN slot_id) RETURN boolean

USED_OPERATIONS

address (slot : IN slot_id) RETURN slots_index ;

expression ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

a_slot ;

slot_type ;

READS_FROM

slots ;

END_OPERATION_REQUIREMENTS

END_OPERATION is_slot_expression

OPERATION is_slot_arithmetic (slot : IN slot_id) RETURN boolean

USED_OPERATIONS

is_slot_expression (slot : IN slot_id) RETURN boolean

is_slot_float (slot : IN slot_id) RETURN boolean

160 Appendix B.

162 Appendix B. TriviCalc - An Example

column_position ;

list ;

list_slot_ids ;

list_strings ;

slots_index ;

READS_FROM

slots ;

END_OPERATION_REQUIREMENTS

END_OPERATION save_sa

END_OBJECT sa

OBJECT dm IS PASSIVE

PROVIDED_INTERFACE

OPERATIONS

clear_error_display ;

display_error_message (text : IN string) ;

display_value (slot : IN slot_id) ;

move_cs (old_cs : IN slot_id ; cs : IN slot_id) ;

set_cs (cs : IN slot_id) ;

delete_char ;

delete_char_at_left ;

delete_line ;I_line (text : IN string) ;

insert_char (char : IN character) ;

insert_string (text : IN string) ; (slot : IN slot_id) ;

delete_char ;

delete_char_at_left ;

delete_line ;I_line (text : IN string) ;

6.(c)d
(ontent)Tj
83.7602 0 Td
(()Tj
10.4398 0 Td
(ontent)Tj
41.8801 0 Td
(:)Tj
10.4398 0 Td
(IN)Tj
15.6 0 Td
(ontent)Tj
41.8801 0 Td
())Tj
10.4398 0 Td
(;)Tj
-214.44 12 Td
[(display_error_mes)1001.18(sa)1001.38(ge)]TJ
115.08 0 Td
(()Tj
10.4398 0 Td
(text)Tj
26.1602 0 Td
(:)Tj
10.4398 0 Td
(IN)Tj
15.7199 0 Td
(string)Tj
36.6 0 Td
())Tj
10.4398 0 Td
(;)Tj
-224.879 11.8797 Td
(display_value)Tj
73.2 0 Td
(()Tj
10.5602 0 Td
(slot)Tj
26.1602 0 Td
(:)Tj
10.4398 0 Td
(IN)Tj
15.7199 0 Td
(slot_id)Tj
41.7602 0 Td
())Tj
10.4398 0 Td
(;)Tj
-188.28 12 Td
(init_dm)Tj
41.8801 0 Td
(;)Tj
-41.8801 1(;)Tj
-62.7insert_char(char : IN character) ;

insert_string (text : IN string) ;

locate_slot (slot : IN slot_id) ;

move_cs (old_cs : IN slot_id ; cs : IN slot_id) ;

B.2. Original TriviCalc design 163

OPERATION_CONTROL_STRUCTURES

OPERATION clear_error_display

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

vdu ;

END_OPERATION_REQUIREMENTS

END_OPERATION ced

OPERATION clear_inverse_video (slot : IN slot_id)

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

vdu ;

END_OPERATION_REQUIREMENTS

END_OPERATION civ

OPERATION delete_char

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

vdu ;

END_OPERATION_REQUIREMENTS

END_OPERATION dc

OPERATION delete_char_at_left

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

vdu ;

END_OPERATION_REQUIREMENTS

END_OPERATION dcal

OPERATION delete_line

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

vdu ;

END_OPERATION_REQUIREMENTS

END_OPERATION dl

OPERATION display_cl_line (text : IN string)

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

vdu ;

END_OPERATION_REQUIREMENTS

END_OPERATION dcll

OPERATION display_content (content : IN content)

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

vdu ;

END_OPERATION_REQUIREMENTS

END_OPERATION dc

B.2. Original TriviCalc design 165

OPERATION_REQUIREMENTS

WRITES_TO

vdu ;

END_OPERATION_REQUIREMENTS

END_OPERATION pclc

OPERATION reset_dm

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

vdu ;

END_OPERATION_REQUIREMENTS

END_OPERATION rdm

OPERATION ring_bell

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

vdu ;

END_OPERATION_REQUIREMENTS

END_OPERATION rb

OPERATION set_cs (cs : IN slot_id)

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

vdu ;

END_OPERATION_REQUIREMENTS

END_OPERATION scs

OPERATION set_inverse_video (slot : IN slot_id)

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

vdu ;

END_OPERATION_REQUIREMENTS

END_OPERATION siv

END_OBJECT dm

OBJECT em IS PASSIVE

PROVIDED_INTERFACE

OPERATIONS

escape_seen ;

init_em ;

report_error (text : IN string) ;

REQUIRED_INTERFACE

OBJECT dm

OPERATIONS

clear_error_display ;

display_error_message (text : IN string) ;

INTERNALS

OPERATIONS

add_to_queue (text : IN string) ;

display_error_message (text : IN string) ;

escape_seen ;

init_em ;

166 Appendix B. TriviCalc - An Example

remove_from_queue RETURN string ;

report_error (text : IN string) ;

DATA

display_in_use : boolean ;

error_queue : list_strings ;

OPERATION_CONTROL_STRUCTURES

OPERATION report_error (text : IN string)

USED_OPERATIONS

add_to_queue (text : IN string) ;

display_error_message (text : IN string) ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

READS_FROM

display_in_use ;

END_OPERATION_REQUIREMENTS

END_OPERATION report_error

OPERATION escape_seen

USED_OPERATIONS

remove_from_queue RETURN string ;

display_error_message (text : IN string) ;

dm.clear_error_display ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

display_in_use ;

END_OPERATION_REQUIREMENTS

END_OPERATION escape_seen

OPERATION add_to_queue (text : IN string)

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

list ;

WRITES_TO

error_queue ;

END_OPERATION_REQUIREMENTS

END_OPERATION add_to_queue

OPERATION remove_from_queue RETURN string

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

list ;

WRITES_TO

error_queue ;

END_OPERATION_REQUIREMENTS

END_OPERATION remove_from_queue

OPERATION display_error_message (text : IN string)

USED_OPERATIONS

dm.display_error_message (text : IN string) ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

WRITES_TO

display_in_use ;

B.2. Original TriviCalc design 167

END_OPERATION_REQUIREMENTS

END_OPERATION display_error_message

OPERATION init_em

USED_OPERATIONS

dm.clear_error_display ;

PSEUDO_CODE

OPERATION_REQUIREMENTS

REQUIRES_TYPE

list ;

WRITES_TO

display_in_use ;

error_queue ;

END_OPERATION_REQUIREMENTS

END_OPERATION init_em

END_OBJECT em

OBJECT data_types IS PASSIVE

PROVIDED_INTERFACE

TYPES

a_slot ;

row_position ;

column_position ;

content ;

cursor_position ;

expression ;

full_slot_type ; --f type+ extended type of a slot

false | blank | comment | fp_value | expression g--

full_value ; --f value+ extended value of a slot expression

false | <fp_value> | <s_string> g--

list_slot_ids ;

list_strings ;

operation_math ; --f + | - | * | / g--

operation_full ; --f <operation_math> | <operation_text> g--

operation_text ; --f `add' | `subtract' | `multiply' | `divide' g--

s_string ;

slot_array ;

slot_id ;

slot_letter ;

slot_number ;

slot_type ; --f blank | comment | fp_value | expression g--

slots_index ;

7.0R357 0.12 Tf
10.5602 8l1.4398 0 Td
(|)Tj
10.4398 Td
(--)Tj
mU940.5602 8l1.43980.4398 0 Td
(--)Tj
/R418 0.12 Tf
10.5602 0 Td
(f)Tj
/R357 0.12 Tf
10.0801 0 Td
(value+)Tj
mU940.5602 8l10 Td
(blas)Tj
10.0 Td
(--)Tj
-29.8801 0 Td
(;)yn:80.439.5602 8l10 10.4398 0 Td
(<fp6
-302.88 12 Td
(operation_o0.5602 0 Td
(<s_strsion)Tj
/R418 0.12 Tf
57.6 0 Td
(g)Tj
/R357 0.12 50 Td
 0 Td
(i1t4ON/PI.12 Tf
589Td
U3ed]
57.6 0 Td
(g)Tj
/R357 0.12 50 Td
 0 Td
(i1t4ON/PI.12 Tf
589Td
U3ed]
57.6 0 Td
(g1t4ON/PI.12 Td
(--)Tj
mU943T: 0 Td
(g)Tj
/R357 i_pog)Tj
52r)Tj
62.7602 0 Td
(;j
10.43
10.439m_qu/PI.12 Td
(--)Tj
mU943T: 0 Td
(g)Tj
/R357 i_pog)Tj
52r)Tj
62.7602 0 Td
(;j
10.43
10.439m4ONfloat418 0.12 Tf
57.: 0 Td
(g)Tj
/R357 float418 d
(slot)Tj
26. Td
(;.4398 11..6 0 Td
(g1t_qufloat418 0.12 Tf
57.: 0 Td
(g)Tj
/R357 float418 d
(slot)Tj
26. Td
(;.4398 11.10.439m4ONnumber)Tj
6(--)Tj
mU943T: 0 Td
(g)Tj
/R357 chay')Ter)Tj
Tf
10.5602 0 Td
(f)OPERATION_REQUIRE)1t_qunumber)Tj
6(--)Tj
mU943T: 0 Td
(g)Tj
/R357 chay')Tergg

m4ONt_arrayg;j
10.43
10.439nil

168 Appendix B. TriviCalc - An Example

zero_float : float ;

END_OBJECT data_types

B.3. TriviCalc Module Structure 169

B.3 TriviCalc

170 Appendix B. TriviCalc - An Example

->DATA TYPES.VALIDITY'),

C('<operation>CLI.COMMAND DESPATCHER:$STANDARD.STRING

->DATA TYPES.VALIDITY'),

C('<data>CLI.LOAD IN PROGRESS'),

%],

[%

C('<constant>DATA TYPES.ZERO FLOAT:->$STANDARD.FLOAT'),

C('<constant>DATA TYPES.NIL:->POP 11.LIST'),

C('<constant>DATA TYPES.MAX S STRING:->$STANDARD.INTEGER'),

C('<constant>DATA TYPES.MIN ROW:->$STANDARD.INTEGER'),

C('<constant>DATA TYPES.MAX ROW:->$STANDARD.INTEGER'),

C('<constant>DATA TYPES.MIN LETTER:->$STANDARD.CHARACTER'),

C('<constant>DATA TYPES.MAX LETTER:->$STANDARD.CHARACTER'),

C('<constant>DATA TYPES.MIN FLOAT:->$STANDARD.FLOAT'),

C('<constant>DATA TYPES.MAX FLOAT:->$STANDARD.FLOAT'),

C('<constant>DATA TYPES.MIN COLUMN:->$STANDARD.INTEGER'),

C('<constant>DATA TYPES.MAX COLUMN:->$STANDARD.INTEGER'),

C('<type>DATA TYPES.VALUE'),

C('<type>DATA TYPES.VALIDITY'),

C('<type>DATA TYPES.SLOTS INDEX'),

C('<type>DATA TYPES.SLOT TYPE'),

C('<type>DATA TYPES.SLOT NUMBER'),

C('<type>DATA TYPES.SLOT LETTER'),

C('<type>DATA TYPES.SLOT ID'),

C('<type>DATA TYPES.SLOT ARRAY'),

C('<type>DATA TYPES.S STRING'),

C('<type>DATA TYPES.OPERATION TEXT'),

C('<type>DATA TYPES.OPERATION FULL'),

C('<type>DATA TYPES.OPERATION MATH'),

C('<type>DATA TYPES.LIST STRINGS'),

C('<type>DATA TYPES.LIST SLOT IDS'),

C('<type>DATA TYPES.FULL VALUE'),

C('<type>DATA TYPES.FULL SLOT TYPE'),

C('<type>DATA TYPES.EXPRESSION'),

C('<type>DATA TYPES.CURSOR POSITION'),

C('<type>DATA TYPES.CONTENT'),

C('<type>DATA TYPES.COLUMN POSITION'),

C('<type>DATA TYPES.ROW POSITION'),

C('<type>DATA TYPES.A SLOT'),

%],

[%

C('<operation>DM.SET INVERSE VIDEO:DATA TYPES.SLOT ID'),

C('<operation>DM.SET CS:DATA TYPES.SLOT ID'),

C('<operation>DM.RING BELL'),

C('<operation>DM.RESET DM'),

C('<operation>DM.POSITION CL CURSOR:DATA TYPES.CURSOR POSITION'),

C('<operation>DM.MOVE CS:DATA TYPES.SLOT ID*DATA TYPES.SLOT ID'),

C('<operation>DM.LOCATE SLOT:DATA TYPES.SLOT ID'),

C('<operation>DM.INSERT STRING:$STANDARD.STRING'),

C('<operation>DM.INSERT CHAR:$STANDARD.CHARACTER'),

C('<operation>DM.INIT DM'),

C('<operation>DM.DISPLAY VALUE:DATA TYPES.SLOT ID'),

C('<operation>DM.DISPLAY ERROR MESSAGE:$STANDARD.STRING'),

C('<operation>DM.DISPLAY CONTENT:DATA TYPES.CONTENT'),

C('<operation>DM.DISPLAY CL LINE:$STANDARD.STRING'),

C('<operation>DM.DELETE LINE'),

C('<operation>DM.DELETE CHAR AT LEFT'),

C('<operation>DM.DELETE CHAR'),

B.3. TriviCalc Module Structure 171

C('<operation>DM.CLEAR INVERSE VIDEO:DATA TYPES.SLOT ID'),

C('<operation>DM.CLEAR ERROR

172 Appendix B. TriviCalc - An Example

C('<constant>SA.BLANK:->DATA TYPES.SLOT TYPE'),

%],

[%

C('<operation>WAE.STORE MACRO:$STANDARD.INTEGER*$STANDARD.STRING'),

C('<operation>WAE.SET CS:DATA TYPES.SLOT ID'),

C('<operation>WAE.RECALL ALL MACROS:->DATA TYPES.LIST STRINGS'),

C('<operation>WAE.IS MACRO NAME:$STANDARD.STRING->$STANDARD.BOOLEAN'),

C('<operation>WAE.INIT CS'),

C('<operation>WAE.INIT CL'),

C('<operation>WAE.GET CS:->DATA TYPES.SLOT ID'),

C('<operation>WAE.EDITOR'),

[%

C('<operation>CL.INIT CL'),

C('<operation>WAEINI

B.3. TriviCalc Module Structure 173

C('<operation>CCP.SAVE CL'),

C('<operation>CCP.PROCESS CONTROL CHAR:$STANDARD.CHARACTER'),

C('<operation>CCP.IS CONTROL CHAR:$STANDARD.CHARACTER

->$STANDARD.BOOLEAN'),

C('<constant>CCP.DESPATCH TABLE:->POP 11.PROPERTY TABLE'),

%],

%],

[%

C('<operation>CS.INIT CS'),

C('<operation>CS.GET CS CONTENT:->DATA TYPES.CONTENT'),

C('<operation>CS.SET CS:DATA TYPES.SLOT ID'),

C('<operation>CS.GET CS:->DATA TYPES.SLOT ID'),

C('<operation>CS.MOVE CS RIGHT'),

C('<operation>CS.MOVE CS LEFT'),

C('<operation>CS.MOVE CS DOWN'),

C('<operation>CS.MOVE CS UP'),

C('<data>CS.CURRENT SLOT'),

%],

[%

C('<operation>IL.INIT IL'),

C('<operation>IL.IS MACRO NAME:$STANDARD.STRING->$STANDARD.BOOLEAN'),

C('<operation>IL.RECALL ALL MACROS:->DATA TYPES.LIST STRINGS'),

C('<operation>IL.RECALL MACRO:$STANDARD.INTEGER->$STANDARD.STRING'),

C('<operation>IL.STORE MACRO:$STANDARD.INTEGER*$STANDARD.STRING'),

C('<constant>IL.OLD CL:->$STANDARD.INTEGER'),

C('<data>IL.MACROS'),

C('<constant>IL.MIN MACRO:->$STANDARD.INTEGER'),

C('<constant>IL.MAX MACRO:->$STANDARD.INTEGER'),

%],

%],

%],

%]

174 Appendix B. TriviCalc - An Example

B.3.2 Final TriviCalc design Module Structure

Below is the final module structure for the TriviCalc problem, proposed by Morpheus .

[%

[%

[%

[%

[%

[%

[%

[%

C('<constant>DATA TYPES.MAX FLOAT:->$STANDARD.FLOAT'),

C('<constant>DATA TYPES.MIN FLOAT:->$STANDARD.FLOAT'),

C('<operation>SA.IS FLOAT:$STANDARD.STRING

->$STANDARD.BOOLEAN'),

%],

[%

C('<constant>DATA TYPES.MAX S STRING:->$STANDARD.INTEGER'),

C('<operation>SA.IS COMMENT:$STANDARD.STRING

->$STANDARD.BOOLEAN'),

%],

C('<constant>DATA TYPES.MAX LETTER:->$STANDARD.CHARACTER'),

C('<constant>DATA TYPES.MAX ROW:->$STANDARD.INTEGER'),

C('<constant>DATA TYPES.MIN LETTER:->$STANDARD.CHARACTER'),

C('<constant>DATA TYPES.MIN ROW:->$STANDARD.INTEGER'),

C('<constant>DATA TYPES.NIL:->POP 11.LIST'),

C('<constant>DATA TYPES.ZERO FLOAT:->$STANDARD.FLOAT'),

C('<constant>SA.BLANK:->DATA TYPES.SLOT TYPE'),

C('<constant>SA.COMMENT:->DATA TYPES.SLOT TYPE'),

C('<constant>SA.EXPRESSION:->DATA TYPES.SLOT TYPE'),

C('<constant>SA.FLOAT:->DATA TYPES.SLOT TYPE'),

C('<operation>SA.CREATE SA'),

C('<operation>SA.CREATE SLOT:DATA TYPES.COLUMN POSITION*

DATA TYPES.ROW POSITION

->DATA TYPES.A SLOT'),

C('<operation>SA.DISPLAY VALUE:DATA TYPES.SLOT ID'),

C('<operation>SA.EVALUATE:DATA TYPES.SLOT ID

->DATA TYPES.FULL VALUE'),

C('<operation>SA.INIT SA'),

C('<operation>SA.IS SLOT ARITHMETIC:DATA TYPES.SLOT ID

->$STANDARD.BOOLEAN'),

C('<type>DATA TYPES.COLUMN POSITION'),

C('<type>DATA TYPES.CONTENT'),

C('<type>DATA TYPES.FULL VALUE'),

C('<type>DATA TYPES.OPERATION MATH'),

C('<type>DATA TYPES.ROW POSITION'),

C('<type>DATA TYPES.SLOT ID'),

C('<type>DATA TYPES.SLOT TYPE'),

%],

[%

C('<data>SA.SLOTS'),

C('<data>SA.STACK'),

C('<operation>SA.ADDRE1.48 cm
B(:DO)1000.57(AT)1001.38TA

TYPES.SLOT

ID

->DATA

TYPES.SLO(S)Tj
ET
Q
q 32.4 0 0 -4.8 4022.281-122.88 cm
BI
/IM true
/W 1
/H 1
/BPC 1
ID �
EI Q
q
10 0 0 10 0 0 cm BT
/R357 0.12 Tf
1 0 0 -14904.881 11.62 Tm
INDEXE'),

C('<operation>SA.ADS

UCCESSORE:DATA

TYPES.SLOT

UCCESSORE:DATA

UC9D9.68 cm
BI
/IM tru7..28
1 0 0 -1 413.88939.3199 Tm
IDN*

DATA

SDATA

SLOT

B.3. TriviCalc Module Structure 175

$STANDARD.BOOLEAN'),

C('<operation>SA.DEPTH FIRST SEARCH:DATA TYPES.SLOT ID

->DATA TYPES.SLOT ID'),

C('<operation>SA.GET CONTENTS:DATA TYPES.SLOT ID

->DATA TYPES.CONTENT'),

C('<operation>SA.GET VALUE:DATA TYPES.SLOT ID*$STANDARD.BOOLEAN

->DATA TYPES.VALUE'),

C('<operation>SA.IS SLOT BLANK:DATA TYPES.SLOT ID

->$STANDARD.BOOLEAN'),

C('<operation>SA.IS SLOT COMMENT:DATA TYPES.SLOT ID

->$STANDARD.BOOLEAN'),

C('<operation>SA.IS SLOT EXPRESSION:DATA TYPES.SLOT ID

->$STANDARD.BOOLEAN'),

C('<operation>SA.IS SLOT FLOAT:DATA TYPES.SLOT ID

->$STANDARD.BOOLEAN'),

C('<operation>SA.LIST SUCCESSORS:DATA TYPES.SLOT ID

->DATA TYPES.LIST SLOT IDS'),

C('<operation>SA.REMOVE SUCCESSOR:DATA TYPES.SLOT ID*

DATA TYPES.SLOT ID'),

C('<operation>SA.UPDATE ORDER:DATA TYPES.SLOT ID

->DATA TYPES.LIST SLOT IDS'),

C('<type>DATA TYPES.A SLOT'),

C('<type>DATA TYPES.LIST SLOT IDS'),

C('<type>DATA TYPES.SLOTS INDEX'),

C('<type>DATA TYPES.SLOT ARRAY'),

C('<type>DATA TYPES.VALUE'),

%],

C('<operation>SA.IS SUCCESSOR:DATA TYPES.SLOT ID*

DATA TYPES.SLOT ID

->$STANDARD.BOOLEAN'),

%],

C('<operation>SA.SAVE SA:->DATA TYPES.LIST STRINGS'),

C('<operation>SA.SET

176 Appendix B. TriviCalc - An Example

C('<operation>CLI.STORE COMMENT:DATA TYPES.LIST STRINGS

->DATA TYPES.VALIDITY'),

C('<operation>SA.IS SLOT:$STANDARD.STRING->$STANDARD.BOOLEAN'),

C('<type>DATA TYPES.EXPRESSION'),

C('<type>DATA TYPES.FULL SLOT TYPE'),

C('<type>DATA TYPES.SLOT LETTER'),

C('<type>DATA TYPES.SLOT NUMBER'),

C('<type>DATA TYPES.S STRING'),

%],

C('<data>CLI.LOAD IN PROGRESS'),

C('<operation>CLI.COMMAND DESPATCHER:$STANDARD.STRING

->DATA TYPES.VALIDITY'),

C('<operation>CLI.FULL FILE NAME:$STANDARD.STRING->$STANDARD.STRING'),

C('<operation>CLI.IS FILE NAME:$STANDARD.STRING->$STANDARD.BOOLEAN'),

C('<operation>CLI.LOAD FILE:DATA TYPES.LIST STRINGS

->DATA TYPES.VALIDITY'),

C('<operation>CLI.STORE VALUE:DATA TYPES.LIST STRINGS

->DATA TYPES.VALIDITY'),

%],

%],

[%

C('<constant>CCP.DESPATCH TABLE:->POP 11.PROPERTY TABLE'),

C('<operation>CCP.CCP CLI'),

C('<operation>CCP.CCP CLI KEEP'),

C('<operation>CCP.CCP DELETE CHAR'),

C('<operation>CCP.CCP DELETE CHAR LEFT'),

C('<operation>CCP.CCP DELETE LINE'),

C('<operation>CCP.CCP GET CS'),

C('<operation>CCP.CCP GET CS CONTENT'),

C('<operation>CCP.CCP REPLACE PERCENT'),

C('<operation>CCP.OBEY CL:->DATA TYPES.VALIDITY'),

C('<operation>CCP.PROCESS CONTROL CHAR:$STANDARD.CHARACTER'),

C('<operation>CCP.SAVE CL'),

%],

[%

C('<constant>CL.MAX CURSOR:->$STANDARD.INTEGER'),

C('<constant>CL.MAX LENGTH:->$STANDARD.INTEGER'),

C('<constant>CL.MIN CURSOR:->$STANDARD.INTEGER'),

C('<constant>CL.MIN LENGTH:->$STANDARD.INTEGER'),

C('<data>CL.CURSOR'),

C('<data>CL.EOS'),

C('<data>CL.LINE'),

C('<operation>CCP.REPLACE CL:$STANDARD.STRING'),

C('<operation>CL.CURSOR LEFT'),

C('<operation>CL.CURSOR RIGHT'),

C('<operation>CL.DELETE CHAR'),

C('<operation>CL.DELETE CHAR LEFT'),

C('<operation>CL.DELETE LINE'),

C('<operation>CL.GET CL:->$STANDARD.STRING'),

C('<operation>CL.INIT CL'),

C('<operation>CL.INSERT CHAR:$STANDARD.CHARACTER'),

C('<operation>CL.INSERT STRING:$STANDARD.STRING'),

C('<operation>CL.LOCATE SOL'),

C('<operation>CL.REPLACE PERCENT:->DATA TYPES.VALIDITY'),

C('<operation>DM.POSITION CL CURSOR:DATA TYPES.CURSOR POSITION'),

C('<operation>WAE.INIT CL'),

C('<type>DATA TYPES.CURSOR POSITION'),

%],

B.3. TriviCalc Module Structure 177

[%

C('<constant>IL.MAX MACRO:->$STANDARD.INTEGER'),

C('<constant>IL.MIN MACRO:->$STANDARD.INTEGER'),

C('<constant>IL.OLD CL:->$STANDARD.INTEGER'),

C('<data>IL.MACROS'),

C('<operation>CCP.CCP RECALL MACRO'),

C('<operation>CCP.CCP STORE MACRO'),

C('<operation>CLI.STORE MACRO:DATA TYPES.LIST STRINGS

->DATA TYPES.VALIDITY'),

C('<operation>IL.INIT IL'),

C('<operation>IL.IS MACRO NAME:$STANDARD.STRING->$STANDARD.BOOLEAN'),

C('<operation>IL.RECALL ALL MACROS:->DATA TYPES.LIST STRINGS'),

C('<operation>IL.RECALL MACRO:$STANDARD.INTEGER->$STANDARD.STRING'),

C('<operation>IL.STORE MACRO:$STANDARD.INTEGER*$STANDARD.STRING'),

C('<operation>WAE.IS MACRO NAME:$STANDARD.STRING->$STANDARD.BOOLEAN'),

C('<operation>WAE.STORE MACRO:$STANDARD.INTEGER*$STANDARD.STRING'),

%],

[%

C('<data>CS.CURRENT SLOT'),

C('<operation>CCP.CCP ADJUST'),

C('<operation>CS.GET CS:->DATA TYPES.SLOT ID'),

C('<operation>CS.GET CS CONTENT:->DATA TYPES.CONTENT'),

C('<operation>CS.INIT CS'),

C('<operation>CS.MOVE CS DOWN'),

C('<operation>CS.MOVE CS LEFT'),

C('<operation>CS.MOVE CS RIGHT'),

C('<operation>CS.MOVE CS UP'),

C('<operation>CS.SET CS:DATA TYPES.SLOT ID'),

C('<operation>DM.MOVE CS:DATA TYPES.SLOT ID*DATA TYPES.SLOT ID'),

C('<operation>WAE.GET

178 Appendix B. TriviCalc - An Example

C('<operation>EM.DISPLAY ERROR MESSAGE:$STANDARD.STRING'),

C('<operation>EM.ESCAPE SEEN'),

C('<operation>EM.INIT EM'),

C('<operation>EM.REMOVE FROM QUEUE:->$STANDARD.STRING'),

C('<operation>EM.REPORT ERROR:$STANDARD.STRING'),

%],

%],

[%

[%

C('<data>EDITOR.CHANNEL'),

C('<operation>EDITOR.GET CHAR:->$STANDARD.CHARACTER'),

C('<operation>EDITOR.INIT CP'),

C('<operation>EDITOR.TERM CP'),

%],

C('<operation>CCP.IS CONTROL CHAR:$STANDARD.CHARACTER->$STANDARD.BOOLEAN'),

C('<operation>CP.EDITOR'),

C('<operation>EDITOR.EDITOR'),

C('<operation>EDITOR.IS ESCAPE:$STANDARD.CHARACTER->$STANDARD.BOOLEAN'),

C('<operation>EDITOR.IS PRINTABLE:$STANDARD.CHARACTER->$STANDARD.BOOLEAN'),

C('<operation>WAE.EDITOR'),

%],

C('<operation>CLI.MAIN PROGRAM'),

C('<operation>CLI.REINITIALISE SYSTEM'),

C('<operation>CLI.SAVE FILE:DATA TYPES.LIST STRINGS->DATA TYPES.VALIDITY'),

C('<operation>TRIVICALC.MAIN PROGRAM'),

C('<operation>WAE.RECALL ALL MACROS:->DATA TYPES.LIST STRINGS'),

%],

[%

C('<constant>$STANDARD.FALSE:->$STANDARD.BOOLEAN'),

C('<operation>$STANDARD.<<=>>:$STANDARD.STRING*$STANDARD.STRING

->$STANDARD.BOOLEAN'),

C('<type>$STANDARD.BOOLEAN'),

C('<type>$STANDARD.CHARACTER'),

C('<type>$STANDARD.FLOAT'),

C('<type>$STANDARD.INTEGER'),

C('<type>$STANDARD.STRING'),

%],

[%

C('<operation>POP 11.CLOSE FILE:POP 11.CHANNEL'),

C('<operation>POP 11.GET INPUT CHAR:POP 11.CHANNEL->$STANDARD.CHARACTER'),

C('<operation>POP 11.ISSTRING:$STANDARD.STRING->$STANDARD.BOOLEAN'),

C('<operation>POP 11.MATCHES:POP 11.LIST*POP 11.LIST->$STANDARD.BOOLEAN'),

C('<operation>POP 11.OPEN:$STANDARD.STRING*$STANDARD.STRING

->POP 11.CHANNEL'),

C('<operation>POP 11.PARSE STRING:$STANDARD.STRING->POP 11.LIST'),

C('<operation>POP 11.READ LINE:POP 11.CHANNEL->$STANDARD.STRING'),

C('<operation>POP 11.SYSEXIT'),

C('<operation>POP 11.WRITE LINE:POP 11.CHANNEL*$STANDARD.STRING'),

C('<type>POP 11.CHANNEL'),

C('<type>POP 11.LIST'),

C('<type>POP 11.PROPERTY

Appendix C

Glossary and Abbreviations

Abstract Data Types An object which encapsulates a type and its operations and operators,

but without declaring a data item for the type.

180 Appendix C. Glossary and Abbreviations

Coupling The dependency between two objects. High coupling indicates that a

change to one object is likely to impact on another. Low cohesion is

desirable.

Degree The number of edges incident on a graph’s node.

Digraphs A graph, where the direction of the edges is significant. Also called

directed graphs. All graphs in this thesis are digraphs.

DFD Data Flow Diagram.

Encapsulation The method of combining data and operations on those data in an

object. (Robinson, 1992a, p.228)

Entity (design) A design component, including objects. In HOOD these consist of

objects, types, operations, constants, variables, operation sets, and

exception.

Environmental Object An object which represents the provided interface of another object

used by the system to be designed, but which is not part of the [cur-

181

Inter- Prefix meaning among, between, together, one with another, etc.

(Bancroft, 1969, p.181)

Interface Specification of the usable (visible) part of an object.

Internals (

182 Appendix C. Glossary and Abbreviations

Overloading The ability for an operation name to be repeated with the definition

of a single object, providing that there is some way of differentiat-

ing between them, i.e., by having different parameter and result type

profiles in Ada, or different argument signature in C++.

(Robinson, 1992a, p.229)

Polymorphism The ability for the selection of an operation body to be determined at

run time, according to the class of the object to which the operation

is currently referring. (Robinson, 1992a, p.229)

Provided Interface Defines the services that an object provides to its clients.

Ratio Scales A scale with a total ordering permitting statements such as “A is twice

as big as B” to be meaningful.

Requires An edge in a design graph represents a requires relationship, i.e., an

Appendix D

Notation Summary

? The empty set.

a 2 A a is a member of the set A.

A = B Set equality.

jAj The cardinality of the set A.

A[B Set union.

A\B Set intersection.

A� B Subset.

A� B Proper subset.

N The finite set of nodes of a graph G(N ;E).

E The finite set of edges of a graph G(N ;E).

E�

184 Appendix D. Notation Summary

KC(x) The Kolmogorov Complexity of x.

A�
=

B Indicates an encoding, such that, B is an encoding of

A.

L�

(n) An optimal universal prefix code for all positive in-

tegers. Each integer has an encoding of the form,

log2 n+ log2 log2 n+ log2 log2 log2 n+ � � � , terminating

when log(: : : logn)� 0. See Section 5.2.3.

log�2(n) Length (in bits) of the L�

(n) function, given by

L�

(n)+ log2 2:865064. See Section 5.2.3.

S Set of all possible design graphs.

Ψ(G) The complexity of the design graph G. See Sec-

tion 6.2.

