I&proving Software Designs
via the
Minissuss Description Length Principle

Joseph



Gender

Male pronouns have been used in this thesis to refer to people of both sexes in order to smooth the
flow of the text rather than imply any sexual bias.



Nomenclature

The word Ada without qualification refers to the Ada83 programming language, defined in Ichbiah
etal. (1983).

HOOD, without qualification, is used to refer to HoOD version 3, defined in Delatte et al.
(1993). All references to HooD 4 (HOOD HRM, 1995) are explicit.

A number of words are used in the literature (e.g., function, procedure, operation, and routine)
to refer to a similar concept. Frequently, each word has a slightly different meaning; for example,
functions are often seen as procedures without side-effects. In this thesis we do not require these
distinctions, and so all such words are equivalent. In general we shall use HOOD’s term operation.

In this thesis, the word object is used to refer to a collection of co-operating items, whereas
the word module is generally used to refer to the older concept of sub-progra
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Typographic Conventions

A few type definitions are given in Chapter 7, these are presented in VDM, see for example Casey
(1994) or Dawes (1991). We have adopted the convention that type-names start with an uppercase
letter, and record field names start with a lowercase letter.
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4 Chapter 1. Introduction

e How is the input of a design to be expressed?
e How are alternative designs created?

e What constitutes a ‘better’ design?

It is the purpose of this thesis to try and answer these questions.

1.2 Motivation

We know from empirical studies (Boehm, 1981), that the cost of correcting defects grows signifi-
cantly the later in the development process the problem is uncovered. Therefore the more potential
errors that are found in the early stages of development reduces the economic costs of owning the
software. This potential for significantly decreasing costs means that the design phase of software
development is an area which merits further research. Moreover, software design is a sophisticated
human skill worthy of study for its insights into other intelligent behaviour.

Most Computer Aided Software Engineering (CASE) tools available today, are little better
than glorified drawing packages sometimes with associated databases. Such tools provide support
for drawing pictures, and recording information about the software being designed. The more
sophisticated systems allow information to be shared by several engineers, and detect improper
use of notation and missing elements. Although useful these facilities are limited and perform
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sub-modules its children, and the module containing a given sub-module its parent. Modules
which may contain sub-modules are called nestable. Modules, unlike humans, can only have
one parent. Further, if a module is contained in another (larger) module, then the whole of the
sub-module must be contained in the single parent.

When an entity has to be shared between several modules, there is potentially some tension as
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The beginning of wisdom is found in doubting;
by doubting we come to the question,
and by seeking we may come upon the truth.



Chapter 2

Software Design

Synopsis

This chapter examines the meaning of software design in more detail. We start by
asking “What is design?”, and looking at the variety of different functions that a
design has to perform. In particular we shall see that a design is not purely mechanical
but captures the value judgements of those who contribute to the design. We shall then
look at various ways for capturing designs and briefly review a broad range of design
methods. We shall then examine the established properties of a good design. We
conclude by looking at the meaning of architectural design and the idea of a design as
a graph.

2.1 Design Theory

Design® theory is concerned with the nature of blism
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design is implemented, the resultant system will satisfy the requirements (see Figure 2.1). This
would also suggest that the success of a design cannot be isolated from its implementation.

—_—
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importance (see Section 2.7). That is, the correct identification and connectivity of components is
essential to the design meeting its requirements; however, simply connecting a set of components
at random does not of itself constitute a design, the whole must be a unified system.

Dasgupta also makes the observation that a design form must serve as a user guide. At first
this may seem strange to software engineers who are used to separate user guides. Nonetheless,
we do expect this information in a design form. Given a new object, the first few questions are
likely to be “what does it do, and how do I use it?”, i.e., we want a user guide. Only when we have
received satisfactory answers to these questions, do we inquire into the connectivity of the object.®

Dasgupta’s final requirement for a design form is normally not addressed by software design
methods, and its absence is responsible for much current research in software and Computer Sup-
ported Collaborative Work (CSCW); a little reflection confirms that it is a necessary condition.
The design form must capture the justification (and history) of a design, so that it can be critically
examined and support changes. That is, the design form must encapsulate some notion of why
this is the preferred design. An immediate consequence is to change the nature of the design from
a static document to a dynamic form. This area is fraught with difficulties, firstly because of the
volume of information and secondly the designer may be reluctant to explain his reasoning due to
satisficing (see Section 2.1.5).

These differing requirements for the design form, are captured diagrammatically in Figure 2.2.

CRITI
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This language need not be the same as the previous language.

e The target implementation language. This impacts on the types of abstraction which will
be considered by the designer. Whilst it is true that all software ultimately runs in ma-
chine code, some languages are better suited to specific task
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development and expression of a specification. Formal notations are intended to be accompanied
by a natural language description of what the mathematics is modelling.

Formal languages have the advantage of being precise, unambiguous and amenable to rigorous
analysis using all the leverage that mathematics can bring to bear. Moreover they permit the
engineer to move away from the fuzzy languages used in the initial specification, and use a more
abstract and precise notation. Precise notation allows the designer to look for missing parts of the
design/specification and ambiguities, whilst also permitting a more abstract model to be developed
which allows alternatives to be explored.

However, formal languages are not without their problems. Most notably their very reliance
on mathematical notation and reasoning which the average engineer is unfamiliar with. This
is not unreasonable since the software engineers must communicate with customers and other
non-specialists. Also as Jackson (1995, p.116) has noted “formalists often forget the need to tie
their descriptions to the reality they describe”. Fetzer (1988) observed that it is impossible to
mechanically (completely) derive an implementation from a specification, which some advocates
of formal methods seem to believe. The cost (in terms of time) of producing a formal model, can
be quite high and may not be justifiable in terms of the benefits to the project.

There are undoubted areas on some projects where the advantages of formal methods outweigh
their disadvantages, but they should not be seen as a panacea, but rather as a valuable part of
software engineering’s toolKkit.

2.3.4 Choice of Language
By this stage the reader may be wondering about our choice of design notation. We believe that
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e Modular Approach to Software Construction Operation and Test (MASCOT) (MASCOT,
1987)

Let us briefly consider stepwise refinement as an example of this design methodology. Step-
wise refinement was proposed by Wirth (1971). The design is developed by successively refining
the previous procedural detail. Thus a system is progressively decomposed from high level func-
tional statements until programming language statements are reached. This process can be though
of as elaborating the design, at each iteration we provide more detail.

At least three different “rules” for refinement have been identified, namely (Grogono, 1980):
divide and conquer, make finite progress, and analyse cases. It is important to realise that at
each iteration a decision (there are always choices) must be made on the “best” way to proceed.
Following this method can lead to dead-ends, and therefore it may be necessary to backtrack and
re-iterate again.

The method is not prescriptive and does not guarantee a solution, nor indeed does it always
provide a notation. It is heavily biased towards the Waterfall model, and is often used as a basis
for teaching design.

The criticisms raised against functional decomposition stem from three main observations.
Firstly, the top level decomposition must be made when knowledge of the problem is least devel-
oped and the method offers no certainty that we have identified the top level function correctly or
that our refinement is not a blind alley. (Think of this as a search, are we starting from the root
node and which child do we visit next?) Secondly, Jackson (1983) has argued that the functions
change over the life of the system as opposed to the structure of the data. Thirdly, the design of
key data structures etc. can permeate the entire program.

It is the second and third problems have led to the evolution of object-oriented design.

2.4.2 Data Structured Design

These methods seek to mould the program (structure) to the structure of the data. An archetypal
example is file handling. These methods do not attempt to model the flow of data through the
system, but rather the static structure of the data. Examples of these methods include:

e Jackson Structured Programming (JSP) (Jackson, 1975)
e Jackson System Development (JSD) (Jackson, 1983)
e Warnier-Orr (Orr, 1971)

The major problem with these methods is their rigidity; the necessity to identity the data’s
structure. Additionally implementations tend to be slow; JSD tends to lead to a large number of
processes, and context switching is expensive (Deitel, 1984). JSP tends to be more mechanistic
than some other design methods, and has been used as the basis for some undergraduate design
courses. However JSP can lead to dead ends caused by structure clashes due to discrepancies
between different real-world data structures.

2.4.3 Object Oriented Design

In this group of methods, the problem domain is seen as being composed of objects and classes of
objects. An object encapsulates both algorithms and data. Objects are potentially related to each
other in a variety of ways, not all of which are hierarchical in nature. For example, a filled red
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¢ Vienna Design Method (VDM) (Jones, 1986)
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6. A design should be derived using a repeatable method that is driven by inform-
ation obtained during software requirements analysis.

Pressman (1992, p.318)

Although the term module is used above, it is clear that our definition of object could equally
be used in its place.

2.6 Architectural Design

In this section we look in more detail at the concept of architectural design. In particular we
examine why we regard architectural design as more significant to the success or failure of a
design than detailed design.

By architectural design we mean the identification of the major components of the design,
especially their purposes and interfaces. How we can see the reason why we claim that detailed
design is less important; detailed design is concerned with designing the internals of the identified
components. As Fowler and Scott (1997, p.22) observed “ ... the biggest technological risks
are inherent in how the components of a design fit together, rather than present in any of the
components themselves”. Moreover, designing the internals is obviously a much smaller and self-
contained problem than the original problem.

In practice, of course, once a ‘large’ component has been identified, the design of its internal
structure is also architectural in nature not just detailed design. We regard the architecture of
‘large’ components to be part of the architectural design phase. Specifically we classify detailed
design as deciding how a component’s services should be provided rather than deciding what
services should be provided.

We saw in the previous section that good design requires objects which are largely indepen-
dent and have a good logical structure. These two concepts are captured by loose coupling and
high cohesion, respectively. These concepts are further examined below, after we have described
exactly what is meant by a component.

2.6.1 What is an Object?

So far, we have been deliberately rather vague about what we mean by a software component or
object. We now offer a more precise definition.

An object is a model of a real-world entity or a software solution entity that combines
data and operations in such way that data are encapsulated in the object and are ac-
cessed through the operations. An object thus provides operations for other objects,
and may in turn also require operations of another object. An object may have a state,
either explicitly to provide control or implicitly in terms of the value of the internal

data. Robinson (1992a, p.34)

This definition accords with Pressman (1992) earlier properties for good design, and gives us
a good definition of an object. It is important to note that an object (generally) both provides
services to other objects and requires services from other objects. This definition does not rule out
mutual recursion, but normally this is rare.

Most modern programming provide the object concept, albeit under a variety of different
names: class, cluster, module, package and structure.

2.6.2 Are these the Right Objects?

Having defined the term “object’, and a definition of good design properties, we how require some
guidance on determining the quality of a proposed architectural design.
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books, which results in communicational cohesion and hence is traditionally considered unsatis-
factory. However, in OOD using an object to represent an abstract data type is considered good
practice.

A generally accepted cohesion scale from highly desirable to accidental is shown below,
(Pressman, 1992, p.334):

Functional Cohesion All components of the module contribute to a single task.

Sequential Cohesion The module’s components are used in some fixed order to perform a task;
but it lacks a strong sense of single mindedness.

Communicational Cohesion The components are located in the same module because they use
the same input or output data rather than having functional cohesion.

Procedural Cohesion The components are related because they are used in some fixed order at
particular moments in time. For example, the use of procedure B must always be preceded
by the use of procedure A.
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Unfortunately, this description is a little too simple, because most large designs require some



Chapter 3
An Overview of HOOD
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it suffices to use a basic model, called the Waterfall model (Pressman, 1992). The Waterfall model
is depicted in Figure 3.1. It must be stressed that the Waterfall is an idealised model, and not a
description of what may happen on a real project.

System
Engineering

Analysis
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(a) Statement of the problem
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3.3 Objects - Architectural Components

HOOD regards objects as the architectural building blocks. This section explains the nature of
objects, and in particular objects in HOOD
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e

~

second
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terminal object has at least two child objects
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3.4.5.2 Inter-Object Visibility

The question of inter-object visibility really boils down to the question, what objects are visible to
the Required Interface of the object being considered. Note that all such entity references must be
resolved by including the object’s name.

e All environmental objects are visible throughout the system.
e The Provided Interface of all of an object’s siblings are visible.
e The Required Interface of the object’s parent (if not a root object) is visible.

¢ Nothing else is visible.

3.5 HOOD Entities

This section describes the entities which may make up a HOOD object.

Types in HOOD
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OBJECT traffic_lights IS ACTIVE

DESCRIPTION
--The traffic lights system controls four traffic lights at a crossroads.
The traffic sensors inform the system of waiting traffic.--

IMPLEMENTATION_CONSTRAINTS
--The system is driven by a 1Hz clock--

PROVIDED_INTERFACE
OPERATIONS
second ;

O0BJECT_CONTROL_STRUCTURE
DESCRIPTION
--Each second, traffic_lights is activated to look at the traffic
sensors and to change the lights.--
CONSTRAINED_OPERATIONS
second CONSTRAINED_BY ASER_BY_IT --|#1234|-- ;

REQUIRED_INTERFACE
NONE

INTERNALS
0OBJECTS
seconds ;
traffic_sensors ;
lights ;
TYPES
road ; --| is (AC, BD) defines road configuration |--
OPERATIONS
second IMPLEMENTED_BY seconds.count ;

OBJECT_CONTROL_STRUCTURE
IMPLEMENTED_BY seconds ;

END_OBJECT traffic_lights

The description section introduces a textual comment describing the problem. It may contain
anything the designer wishes. All comments in an ODS are bracketed by ‘~-{’ and ‘}--’. In
addition to comments, an ODS may contain free text, bracketed by ‘--1" and *|--’". Free text may
only occur in specific places in the ODS, and used as a mechanism for passing additional inform-
ation to other tools, the text has no defined meaning in HooD. The implementation_constraints
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The design for 1ights is shown below

OBJECT lights IS PASSIVE

DESCRIPTION
--{0bject lights is used to set a traffic light pair to a selected colour;
allowing for proper sequencing of all lights as necessary for safety.}--

IMPLEMENTATION_CONSTRAINTS
-—{In this simulation, text_io is used to provide a readable output.}--

PROVIDED_INTERFACE
TYPES
colour ; --| is ( RED, RED_AMBER, GREEN, AMBER ) |--
OPERATIONS
change ( road_name : IN traffic_lights.road ;
to_colour : IN colour ) ;

REQUIRED_INTERFACE
OBJECT traffic_lights
TYPES
road ;

OBJECT text_io
TYPES
string ;
OPERATIONS
put_line ( item : IN string ) ; --| print a string |--

INTERNALS
DATA
other_road : traffic_lights.road ;

OPERATION_CONTROL_STRUCTURES

OPERATION change ( road_name : IN traffic_lights.road ;
to_colour : IN colour )
DESCRIPTION

--{The data item other_road is initialised to the opposite of the
value of road_name. If the requested colour is GREEN, operation
change controls the full sequencing from GREEN to AMBER to RED
for one light set, and RED to RED-AMBER to GREEN for the other
light set.
If the requested colour is RED or AMBER, operation change simply
sets the requested light to RED or AMBER.}--

USED_OPERATIONS
text_io.put_line ( item : IN string ) ;

PSEUDO_CODE
--|if road_name = AC then

set other_road = BD

else
set other_road = AC

end if ;

if to_colour = GREEN then
set other_road lights to AMBER ;
set road_name lights to RED-AMBER :
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set other_road lights to RED ;
set road_name lights to GREEN :
else
set road_name lights to to_colour ;
endif |--
END_OPERATION change

END_OBJECT lights

Much of this is as for traffic_lights so we will only discuss the new sections.

The required_interface section now says that 1ights requires types traffic_lights.road
and text_io.string, in addition to the operation text_io.put_line.

The new section operation_control_structures contains an entry for each operation declared
in the internals. Each operation is described as required. This is followed by a list of used
operations, and optionally as comments) pseudo_code and the final code.

The designs for seconds and traffic_sensors are shown below

OBJECT seconds IS ACTIVE

DESCRIPTION
--{0bject seconds is activated from its parent object traffic_lights by the

operation traffic_lights.second. It checks for traffic and changes the
lights if appropriate.
Seconds keeps a count of the time since the last light change and the
road pair that is GREEN (AC/BD).
After 40/20 seconds elapsed, seconds checks the traffic_sensors each
second. When the traffic sensors show that there is traffic waiting at
the other road, the lights are changed.}--

IMPLEMENTATION_OR_SYNCHRONISATION_CONSTRAINTS
--{Operation count of object seconds is activated once every second by
interrupt at address 1234.}--

PROVIDED_INTERFACE
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to_colour : IN colour ) ;

OBJECT traffic_sensors
TYPES
present
OPERATIONS
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is_present : IN OUT present ) ;

REQUIRED_INTERFACE
OBJECT traffic_lights
TYPES
road ;

INTERNALS

TYPES
latch ;

DATA
ac_sensors : latch ;
bd_sensors : latch ;

OPERATIONS
read_sensor ( sensor : IN latch ) RETURN present ;
check ( road_name : IN traffic_lights.road ;

is_present : IN OUT present ) ;

OPERATION_CONTROL_STRUCTURES

OPERATION check ( road_name : IN traffic_lights.road ;
is_present : IN OUT present )
DESCRIPTION
--{Operation check reads the hardware sensors for the road given in
the parameter road_name to find out if traffic is present on
either side, and returns the value is_present set to TRUE or
FALSE. }--
USED_OPERATIONS
read_sensor ( sensor : IN latch ) RETURN present ;
END_OPERATION check

OPERATION read_sensor ( sensor : IN latch ) RETURN present
DESCRIPTION
--{Operation read_sensor reads a hardware sensor at the given sensor
latch, and returns the value TRUE or FALSE.}——
END_OPERATION read_sensor

END_OBJECT traffic_sensors

Finally the design of the environmental object text_io is below, recall that such objects have
nothing except a provided_interface.

OBJECT text_io IS ENVIRONMENT PASSIVE
PROVIDED_INTERFACE
TYPES
string ;
OPERATIONS
put_line ( item : IN string ) ; -
END_OBJECT text_io

3.7 Unused HOOD Facilities

As mentioned in the introduction to this chapter, some features of HOOD were not used in this
thesis. This section briefly outlines these unused features, and explains why they were omitted.

Generic Classes in HooD allow the creation of Ada generic objects, which can then be instanti-
ated to form objects. Their use in HOOD is not very common, and how this kind of inform-
ation should be handled in our complexity measure is far from clear.






Chapter 4

Complexity Measures

Synopsis

This chapter provides a critique of previous work on measuring software design com-
plexity. The advantage of a design metric is thet it can be used early in the production
process to identify potential trouble spots thereby reducing the costs of production.
Design metrics are therefore required to detect over complex objects. 'We conclude
the chapter by considering ways to validate proposed complexity rneasures.

In Chapter 2, we examined the problems associated with capturing designs, in terms of design
as an activity, the effects of different design notations and the different clesign methodologies. In
Chapter 3, we introduced HOOD as our chosen design notation and method for reducing complex-
ity. The Chapter concluded by demonstrating tiiat HOOD is a reascnable choice in the light of
Chapter 2. Before developing our model further this chapter provides a critical review of related
work i determining design complexity.

b Morpﬁeus
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4.1 Requirements for a Complexity Measure

Based on the above overview, we want our complexity measure to satisfy the following require-
ments

e |t must be possible to evaluate a design’s complexity without reference to its implementa-
tion.
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e LOC tells us nothing about how to make complex designs less complex.

We have been very critical of LOC, perhaps unfairly as this measure was never meant to reflect
design quality or complexity. However, this analysis does serve to lay a framework for discussing
other proposed program complexity measures.

The most notable code metrics are Software Science (Halstead, 1977) and Cyclomatic Com-
plexity (McCabe, 1976). Both have been quite well researched; and were initially regarded quite
favourably, but more recently their theoretical underpinnings have been shown to be weak (see
Shepperd and Ince, 1993, p.28-40).

Since software engineers use such a wide variety of notations, some researchers have tried
to extract design information from the resulting program code rather than the design (Shepperd,
1993, p.8), but as Shepperd comments “this must be considered a last resort”. The problem is that
the information is available so late and furthermore the code implementation may have an impact
on what exactly is measured.

Clearly, due to their late availability and doubts over their value as complexity metrics, code
metrics are unsuitable for our purposes. So we shall now look at some of the proposed design
metrics.

4.2.2 Design Metrics
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Shepperd reports because distance metrics which yielded intuitive results with one design failed
to produce acceptable results for other examples. Even small changes to a design could make the
resultant dendrogram unappealing to our intuitive notions of a good design. We conclude therefore
that this approach was unsuitable for our purposes.

4.2.3 Object Oriented Design Metrics

As explained earlier this thesis is not based on object oriented design but rather object based design
concepts, but given the current interest in the work of Chidamber and Kemerer (1994), we deal
briefly with this subject. Chidamber and Kemerer proposed a set of six metrics for measuring a
variety of attributes of object-oriented systems (by examining the program code). These attributes
are: weighted methods per class, depth of inheritance tree, number of children of a class, coupling
between object classes, response for a class (i.e., the number of methods potentially called by a
class) and lack of cohesion in methods.

Their work, which has become a de facto standard for object-oriented metrics, includes a philo-
sophical basis and theoretical validation against the Weyuker (1988) property set for complexity
measures. However Chidamber and Kemerer offer no me