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Abstract

An interpretation of the evolution of complexity in the Iterated

Prisoner's Dilemma (IPD) is developed, based on Ashby's \law of req-

uisite variety". It is demonstrated that the in
uence of noise on the

evolutionary dynamics of this system is critically dependent on the

locus of this noise. It is also argued that noise in such an evolving

system is not merely, (or necessarily) a source of variation that must

be adapted to, but, in certain circumstances, can facilitate the evolu-

tionary exploration of increased areas of genotype space.

This convergence between arti�cial life/game theory and cybernet-

ics holds implications for how we understand the general relationship



1 Introduction

The general principle that there is organism complexity by virtue of envi-

ronmental complexity has been well explored philosophically, [6],[13],[1],[4],

and there have been several recent contributions, within arti�cial life, to an

empirical foundation for this position, [5],[8],[9],[11],[10].

This report extends work presented in [9] demonstrating that the intro-

duction of noise



that pertains to this research; Ashby's \Law of Requisite Variety" (LRV), [1].



Ashby also reminds us that not all environmental variability need threaten

the survival of the agent, and argues that variety comes in two fundamental

forms:

There is that which threatens the survival of the gene-pattern.

This part must be blocked at all costs. And there is that which,

while it may threaten the gene-pattern, can be transformed (or

re-coded) through the regulator R and used to block the e�ect of

the remainder. (ibid, p.212).

According to Ashby, then, environmental variability can be either poten-



player 2 cooperates player 2 defects

player 1 cooperates 1:R=3 2:R=3 1:S=0 2:T=5

player 1 defects 1:T=5 2:S=0 1:P=1 2:P=1

Table 1: IPD payo� matrix; note that the actual scores are unimportant as long

as T > R > P > S and 2R > T + S.

evolution of complex strategies. The ecology consisted of a population of

variable length genotypes, with each genotype coding for a particular strategy

for playing the IPD, and with the length of each genotype determining the

number of previous iterations it could take account of when delivering its next

move. This strategy \memory" can be taken to be a metric of complexity

3

.

Noise was incorporated by introducing a certain probability that the move-to-

be-made on any given iteration (as speci�ed by the genotype) was \
ipped"

before the payo�s were calculated.

Two models were developed (for details, see [9]); a compulsory model, in

which every member was forced to interact with every other member, and a

choice and refusal model (the IPD/CR), in which each member maintained

a set of expected payo� values for every other member, and could choose

and refuse who to interact with. This latter model is drawn from [14] and

is redescribed in [9]. A tournament-style genetic algorithm was employed in

both models, with equalwho



away from stable cooperation can then be expected to have a deleterious

e�ect on �tness, unless it is countered by strategy that can e�ectively cope

with such variation. For example, an occasional \accidental" defection will

throw a population of \tit-for-tat" players into continual mutual defection

but a \tit-for-two-tats" population will \absorb" such a defection, permitting

general cooperative behaviour to persist throughout the population.

In terms of Ashby's LRV, any variety in D can only be prevented from

a�ecting O if it is countered through the action of R on S; that is, if the

variety in R (given S) matches that of D. This construal of the IPD allows

us to predict that noise (variety) on D may lead to the evolution of more

complex strategies (supporting variety in R) to counter this disturbance, but

that noise on O will not. Noise on the outcome, after all, is precisely what

the strategies would be expected to prevent, and if the noise is applied di-

rectly to O, then, by de�nition, no strategy can provide an e�ective response.

We can therefore distinguish two types of noise:

� M-noise: on each iteration, and for each player, there is a certain prob-

ability, (p = 0:01 in these experiments), that the move speci�ed by the

genotype is 
ipped, and only then are the payo� scores calculated with

reference to the payo� table.

� O-noise: on each iteration, and for each player, there is a certain prob-

ability, (p = 0:01 in these experiments), that the payo� awarded is

altered. Each time this occurs, the actual payo� awarded is selected

randomly from the four possible payo� values.

We can now predict that M-noise may lead to the evolution of more

complex strategies, but O-noise will not. This hypothesis will henceforth

be referred to as the LRV hypothesis. Furthermore, we may expect that this

hypothesis will only be con�rmed in stable cooperating IPD populations, and

not in unstable populations.

3 The LRV Hypothesis

The �rst set of experiments were conducted with a compulsory IPD model,

the parameters of which are given in Appendix 1. Ten evolutionary runs,
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of 10,000 generations each, were performed in each of 3 conditions; M-noise,

O-noise, and zero noise.

4

Figure 1 shows that without any noise, complex strategies never really

evolve; the evolved memory tends to stay either at the initial level of 1,

or drop to zero. Figure 2 illustrates that with M-noise, complex strategies

do evolve; not always, and not always to the maximum, but it does hap-

pen. However, contrary to the LRV hypothesis, �gure 3 illustrates that

O-noise has the same e�ect as M-noise. Applying t-tests to the sets of

means from each condition, these observations are statistically signi�cant.

There is signi�cantly more evolved memory in the M-noise and O-noise con-

ditions than in the zero noise conditions (t = 2:52; df = 18; p < 0:05 and

t = 2:51; df = 18; p < 0:05 respectively). But there is no signi�cant di�erence

between the M-noise and the O-noise conditions (t = 0:22; df = 18; p > 0:5).

The second set of experiments were conducted with an IPD model incor-

porating choice and refusal (IPD/CR). In order to di�erentiate the conditions

in this model, a small cost on complexity was applied (in all the conditions)

by levying a �tness penalty on genotype length. Again, 10 runs were per-

formed, of 5,000 generations each, in each condition. Here we clearly see

that with either zero noise (�gure 4) or O-noise (�gure 6), complex strate-

gies do not often arise. However, with M-noise (�gure 5), the evolution

of complex strategies is considerably more noticeable. Again, t-tests re-

veal these observations to be highly signi�cant. There is signi�cantly more

evolved memory in the M-noise condition than with O-noise or zero noise

(t = 3:20; df = 18; p < 0:005 and t = 3:79; df = 18; p < 0:005 respectively).

But there is no signi�cant di�erence between the zero noise and the O-noise

conditions (t = 1:42; df = 18; p > 0:1).

The LRV hypothesis, in this model, is seen to hold true. The evolution

of complexity only responds to variety in the environment, not to variety on

the outcome.

So why is it that only the IPD/CR model produces results consistent with

the LRV hypothesis? Table 2 clearly indicates that only the IPD/CR model

4

Each run, of 10000 generations, took approximately 1 hour on a 143MHz single user

Sun UltraSparc. The 5000 generations of the IPD/CR model required 3 hours of CPU

time for each run.
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this model. We �rst consider evidence that the evolution of complexity that

we observe with
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Figure 10: Compulsory IPD; memory limited to 0-1 range. Both M-noise and

O-noise permit average memory to approach the expected average; without noise,

the average memory appears to be \stuck" at one extreme or the other.

zero noise t = �0:78; df = 22; p > 0:1). So neither type of noise is actu-

ally encouraging (or discouraging) the evolution of complexity per se in this

model.

4.2 In
uence of Noise on Cooperation

It was also observed that both O-noise and M-noise increase the amount of

cooperation in this memory-limited compulsory IPD model. Both M-noise

and O-noise might be expected to have such an e�ect since, given a predom-

inantly defecting population, both kinds of noise would permit a cooperative

move to occasionally score well. Fig 7 indicates that typical cooperation in

the zero-noise compulsory IPD model is very low, and indeed the average

prevalence of cooperation over all ten runs was only 4.43% (standard devia-

tion 2.43), and also seems to indicate that both M-noise and O-noise enhance

population cooperation.

This intuition was tested in the memory-limited model, and �g 11 pro-

vides summary data, collected from the 12 runs in each condition, indeed

indicating that both O-noise and M-noise signi�cantly increase the level of

population cooperation from that present with zero noise (t = 3:39; df =

22; p < 0:001; and t = 5:49; df = 22; p < 0:001 respectively), with the
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Figure 11: Compulsory IPD; memory limited to 0-1 range; O-noise enhances pop-

ulation cooperativity and M-noise enhances population L-Z complexity. Standard

deviations indicated by error-bars.

e�ect being signi�cantly more pronounced for the O-noise condition (t =

4:62; df = 22; p < 0:001). This graph also illustrates how population stability

varies across the di�erent conditions. Stability was measured by calculating

the Lempel-Ziv complexity of the cooperation for each run, (see [7]). This

calculation involved noticing that in the compulsory IPD model, the pop-

ulation, at any time, was generally either completely cooperating or com-

pletely defecting. Thus, the population cooperation over x generations can

be recast as a binary string of length x. The Lempel-Ziv (L-Z) complexity

measure delivers the size of the minimum program required to generate a

binary string, and this is minimal for a uniform string and maximal for a

completely random string. Fig 11 is therefore indicating that both M-noise

and O-noise lead to signi�cantly greater levels of population cooperation in-

stability than the zero noise condition (t = 10:16; df = 22; p < 0:001; and

t = 4:19; df = 22; p < 0:001 respectively), with the e�ect being signi�cantly

more pronounced in the M-noise condition (t = 5:60; df = 22; p < 0:001).

So both O-noise and M-noise in
uence the population stability dynam-

ics, but in di�erent ways. Both increase the overall level of cooperation, but

whereas for O-noise this e�ect is characterised by longer periods of steady

cooperation, for M-noise increased population instability is the more pro-

nounced e�ect. Note that this e�ect is also visible in the standard (non-
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Figure12:Compulsory IPD model; there is a high correlation between complexityrate used).memory-limited)compulsoryIPDmodel(see�g7).4.3Dep endenceofComplexityonCo op eration
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case that the variety of the response ismatching the variety of the M-noise, in

the strict sense implied by the LRV (Section 1.1). Indeed, �gure 2 illustrates

that the complexity response to a steady level of M-noise is generally unpre-

dictable. It is therefore not possible to say that the complex strategies are

adapting to the M-noise, and to that alone. What we can say is that the com-

plex strategies are adapting to some aspect of the environment dependent on

the introduction of M-noise, and which is almost certainly heavily in
uenced

by the co-evolutionary nature of the IPD model. The exact nature of the

variety of the environment presented by (and to) any given population will

not be predictable (thanks to co-evolutionary dynamics), and so a stable and

predictable response to the introduction of M-noise will not be observed. So,

although the LRV undoubtedly



other adaptive evolving systems in use in arti�cial life research, b) a broad

scope to the principles of cybernetic theory, in particular the LRV, and c) a

distribution of noise in a broad class of evolving systems.

In other words, the models developed here serve best as a bridge between

arti�cial life and cybernetics from which some new theoretical and empirical

territory, concerning the role(s) of noise, can be surveyed. Of course, in

a more immediate sense this work also constitutes a contribution
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