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A good performan
e, like a human life, is a temporal a�air: a pro
ess in time.

- Mortimer J. Adler

Abstra
t

There are immense problems in developing arti�
ial nervous systems for autonomous ma
hines

operating in non-trivial environments. In parti
ular, no prin
ipled methodology is in pla
e to de
ide

between solution 
lasses and representations, and between methods by whi
h solutions might be de-

veloped using hand-design or sear
h te
hniques. In this paper we apply the te
hniques of dynami
al

systems theory to the analysis of su

essfully evolved robot 
ontrol systems, in order to identify useful

properties of the underlying 
ontrol ar
hite
ture. We investigate the suitability of two di�erent neural

network 
lasses for a roboti
 visual dis
rimination task, through analysis of both su

essful 
ontroller

behaviour and 
ontinued evolution of su

essful solutions in environments with modi�ed 
hara
ter-

isti
s. We argue that the temporally adaptable properties of the GasNet 
lass identi�ed through

dynami
al systems analysis, and found to be useful in order to re-evolve in modi�ed environments,

are 
ru
ial to the evolution of su

essful 
ontrollers for the original environment.

1 Introdu
tion

Identi�
ation of 
ontrol system 
lasses 
apable of generating adaptive behaviour over time is a bla
k

art. Many pra
titioners rely on systems that have \always worked in the past", others may use trial-

and-error until su

ess, but 
arry out no subsequent analysis of why that parti
ular system a
tually

worked. A major problem with su
h approa
hes is that it is extremely diÆ
ult to develop a more general

understanding of the properties ne
essary for generating adaptive behaviour. In parti
ular, is a parti
ular

solution 
lass appropriate for a parti
ular problem? Addressing this issue is 
ru
ial if we are to su

essfully

apply te
hniques su
h as evolutionary 
omputation to more 
omplex adaptive behaviour problems than

at present.

In this paper we develop an approa
h based on analysis of su

essfully evolved solutions. This allows us

to identify properties of network 
lasses that are potentially useful over a wider 
lass of problems than

the original task. We then develop a methodology for testing these properties, through analysis of the

evolved solutions in modi�ed environments.

We overview two 
lasses of neural network, the \GasNet" and \NoGas", used as 
ontrollers in a visual

shape dis
rimination problem, and give eviden
e that the GasNet 
lass is more amenable to evolutionary

sear
h than the NoGas 
lass. We then use the te
hniques of dynami
al systems analysis to identify possible

reasons for this in
reased evolutionary speed, and frame a number of hypotheses for the suitability of the

GasNet 
lass to robot 
ontrol. In parti
ular, we show how the properties of gas di�usion 
an be used to

1



�lter out sensor input noise, produ
e simple pattern generation networks, and swit
h networks from one

stable state to another. We hypothesise that these properties lead to GasNet solution spa
es in whi
h it

is easier to �nd good 
ontrollers than the 
orresponding NoGas solution spa
es.

We go on to 
ompare the operation of two 
ontrollers, one GasNet solution and one NoGas solution, whi
h

utilise the same visual shape dis
rimination strategy. We argue that the GasNet 
ontroller is easier to tune

to the
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the phenotype value was obtained by normalising the genotype value to lie in the range [0:0; 1:0℄

2

and

multiplying by the relevant variable range. For nominal values, su
h as whether the node has a visual

input or not, the phenotype value was 
al
ulated through the binary modulo division operator:

p =

�

g=99 
ontinuous p

g mod N

nom

nominal p

(9)

where p is the phenotype value, g the genotype value, N

nom

the number of possible nominal phenotype

values, and mod the binary modulo division operator, that is the remainder when g is integer divided by

N

nom

.

Ea
h node in the network had either 19 or 25 variables asso
iated with it, depending on whi
h of two

possible 
onne
tivity en
oding s
hemes were used (se
tion 3.2). All variables were under evolutionary


ontrol, see �gure 3. A single genotype thus 
onsists of a string with length as some multiple of 19 or 25,


oding for a variable number of network nodes.
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Figure 3: The genotype-to-phenotype mapping for the ar
s and 
onne
tions network s
hemes des
ribed in se
tion

3.2.

The en
oding shown in �gure 3 was used to generate networks 
on
eptualised to exist on a 2D Eu
lidean

plane. < x > and < y > give the position of a network node on the plane. The next 6 or 12 numbers

de�ne the synapti
 
onne
tivity of the network; se
tion 3.2 gives details of the ar
 and point s
hemes

used to derive the 
onne
tivity. The rest of a gene is interpreted as follows. < I

on

> is a binary swit
h

that determines whether or not a node has visual input. If it does, the following three variables en
ode

the polar 
oordinates of a pixel in the 
amera image that the node will take input from, and a threshold

below whi
h input from that pixel is ignored (visual input is normalised to lie in the range [0:0; 1:0℄, this

is the range of the threshold). See se
tion 3.3 for details of the visual input to the network.

The value of < re
 > determines whether the node has an ex
itatory re
urrent 
onne
tion, an inhibitory

re
urrent 
onne
tion or no re
urrent 
onne
tion to itself. < TE > provides the 
ir
umstan
es under whi
h

the node will emit a gas. These are one of either: not at all; if the node ele
tri
al a
tivity ex
eeds some

threshold; if the 
on
entration of gas 1 at the node site ex
eeds some threshold; or if the 
on
entration of

gas 2 at the node site ex
eeds some threshold (the ele
tri
al and gas thresholds are set at 0:5 and 0:1 as

des
ribed in se
tion 2.1). < CE > spe
i�es the gas that the node 
an emit under the 
orre
t 
ondition,

either gas 1 or gas 2. < s > is used to 
ontrol the rate of gas build up/de
ay as des
ribed earlier by

equation 3, its value ranges from 1 to 11. < R

e

> is the maximum radius of gas emission, this ranges

from 10% � 50% of the plane dimension. < D

0

> is the default value for the index used in equation 7

to determine the transfer parameter value K

t

i

for ea
h node. Finally, < bias > is the bias term b

i

in the

node transfer fun
tion (equation 1), restri
ted to the range [�1:0; 1:0℄.

The en
oding s
heme used was the same for both the GasNet and NoGas 
lasses, with the NoGas

genotypes e�e
tively en
oded with a number of introns. For the NoGas 
ontrollers, 
ertain of the genotype

parameters were ignored 
ompletely. These parameters were < TE >;< CE >;< s >;< R

e

>, en
oding

for the parameters of gas di�usion at ea
h node.

2

This 
an be regarded as an approximation to a 
ontinuous [0; 1℄ range; experiments show no signi�
ant di�eren
e

between the two setups.
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3.2 The network 
onne
tivity: Ar
s and points



was also investigated whereby two of the points en
oded +1 weighted 
onne
tions, and two �1 weighted


onne
tions, but no signi�
ant di�eren
es were seen.

3.3 The network visual input and motor output

Node plane

Visual inputVisual Input node

Motor node (fixed position)

Hidden node Gas diffusion radiusInhibitory link (-1)

Excitatory link (+1)

Visual input positions in camera








whi
h the experimenter has a

ess to 
ertain global position information that is not passed dire
tly to

the evolutionary pro
ess. This position information may be used in the �tness fun
tion, for example to

determine how 
lose the robot approa
hed to the triangle.

The minimal simulation of the gantry was developed by Jakobi (1998a,b). The base set of robot-

environment intera
tions upon whi
h behaviour 
ould be reliably based, 
onsisted of only two members.

First, the way in whi
h pixels of the 
amera image that are sampled from the walls of the arena (but

not from the 
oor or above the walls) return grey-s
ale values within 
ertain intervals: over the range

[14; 15℄ for pixels that proje
t onto either the triangle or the square, and over the range [0; 13℄ for pixels

that proje
t onto the walls of the arena, but not onto either the triangle or the square. Se
ond, the way

in whi
h the robot moves in response to motor signals.

To ensure that 
ontrollers were both base set robust and base set ex
lusive, in other words that 
ontrollers

relied only on base set intera
tions and not on implementation aspe
ts of the model, all other parameters

were modelled unreliably. Over the possible ranges of pixel inputs, [14; 15℄ for pixels that proje
t onto

either the triangle or the square, [0; 13℄ for pixels that proje
t onto the walls of the arena, and the entire

[0; 15℄ range for other 
ases, values were returned unreliably (remember that the base set aspe
t is the

range over whi
h the pixel values are returned, not the way in whi
h they are set over this range). This

unreliability was set at the start of ea
h trial, with possible e�e
ts varying pixel inputs as a fun
tion of

time, or as a fun
tion of the orientation of the robot, or �xed for the entire evaluation at a random level

set before ea
h trial. The momentum of the robot was also made unreliable, with the momentum being

�xed at the start of ea
h trial. Similarly, small o�sets were added to the wheel speeds, 
amera horizontal

and verti
al angles, and the positions of the shape verti
es, with the o�sets set randomly at the start of

ea
h trial. For further details see Jakobi (1998a,b).

4.2 Visual shape dis
rimination

Starting from an arbitrary position and orientation in a bla
k-walled arena, the robot must navigate under

extremely variable lighting 
onditions to one shape (a white triangle) while ignoring a se
ond shape (a

white square). Fitness over a singleseeaddedrando1J
29.6402 0 Tlsowheel

the
amera

re99 0 Td
[(v)47(try)℄TJ
the7
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Figure 7: The �tness distribution of a

single genotype evaluated 10



5 The evolutionary ma
hinery

5.1 Mutation and re
ombination operators

Three mutation operators were applied to solutions with probability �% during the evolution and re-

evolution experiments



5.3 Speed of evolution results

The evolution of solutions based on the GasNet 
lass 
onsistently produ
es su

essful robot 
ontrol

solutions in signi�
antly fewer evaluations than required by the evolution of solutions based on the

NoGas 
lass. This result holds over a number of di�erent evolutionary algorithms, with a number of

di�erent
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Figure 10: The mean number of evaluations required for (a) variable and �xed length genotypes, and (b) Ar
s

and points 
onne
tivity s
hemes. Data averaged over twenty runs of the distributed evolutionary algorithm. The

error bars represent 95% 
on�den
e limits for the mean, the number above the bar gives the per
entage of runs

failing to �nish in 1; 000; 000 evaluations.

distribution of the sear
h spa
e surrounding solutions to build up a des
ription of the �tness lands
ape.

However, applying su
h measures to the GasNet and NoGas sear
h spa
es shows no measurable di�eren
es

in ruggedness, modality and neutrality between the lands
apes underlying the two 
lasses (Smith et al.,

2002b).





through approa
hing a di�erent attra
tor state. Su
h analysis has been 
arried out to understand the

behaviour of a variety of evolved robot 
ontrollers, most espe
ially in the work by Beer and 
o-workers

(see for example Beer, 1990; Beer and Gallagher, 1992; Beer, 1995; Chiel et al., 1999; Calvatti and Beer,

2001). However, in this paper we are interested in analysing the 
ontrollers operation in terms of how

easy or diÆ
ult su
h 
ontrollers may be to evolve, espe
ially when using di�erent robot 
ontrol 
lasses. In

the next two se
tions, we apply the basi
 te
hniques to two example dynami
al systems; a predator-prey

population model, and an evolved pattern generation GasNet 
ontroller.

7.2 An example dynami
al system: Predator-prey populations

The 
lassi
 biologi
al dynami
al system is the predator-prey (or host-parasite) population model famously

studied by both Lotka (1925) and Volterra (1926). In this model we are interested in how the populations

of the two spe
ies vary over time, espe
ially with respe
t to initial 
onditions of the state variables.

Consider a population x. Over time, the population in
reases exponentially in size through breeding, but

with a self-limiting fa
tor dependent on the 
urrent population size, for example due to over
rowding or

limited food resour
es. Thus we derive the di�erential equation for the rate of 
hange of the population:

dx

dt

= a:x(1� b:x) (11)

Now 
onsider a prey population x, and a predator population y. Both populations 
hange over time as

given by equation 11, although we negle
t the self-limiting fa
tor for the prey population as we assume

the predators never let the prey population rea
h su
h a level. However, there is an additional population

intera
tion term when both predator and prey are present: the probability of a predator-prey en
ounter

is proportional to the produ
t of both the predator and prey populations. Thus the predator population

in
reases, and the prey population de
reases, with rate proportional to the produ
t of the two populations.

From these premises we derive the di�erential equations, or dynami
al laws, governing the rate of 
hange

of the two populations:

dx

dt

= a:x(1� y) (12)

dy

dt

= b:y(1� 
:y + x) (13)

the Volterra equations for the predator-prey system. In the rest of this paper, we 
onsider dis
rete time-

step neural networks in whi
h the a
tivity of a network node is derived dire
tly, rather than through

di�erential equations. Thus we use the dis
rete form of the above equations (Sandefur, 1990, gives a

good introdu
tion to dis
rete dynami
al systems):

x

t+1

� x

t

�t

= a:x

t

(1� y

t

) (14)

y

t+1

� y

t

�t

= b:y

t

(1� 
:y

t

+ x

t

) (15)

the 
hange in x and y from time-step t ! t + 1. Without loss of generality, we 
an take the time-step

�t = 1. Thus we have our dynami
al equations for the predator-prey system A

t+1

= F(A

t

):

�

x

t+1

y

t+1

�

=

�

a:x

t

(1 + 1=a� y

t

)

b:y

t

(1 + 1=b� 
:y

t

+ x

t

)

�

(16)

Now, we are interested in the behaviour of the system over time, so we need to �nd the equilibrium

values. When the system is in equilibrium, the state variables do not 
hange over time: dA=dt = 0, or

A

t+1

= A

t

. Solving for our system, we �nd three equilibrium values at (0; 0); (0; 1=
) and (
� 1; 1).

16





0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2



Node plane

Visual inputVisual Input node

Motor node (fixed position)

Hidden node Gas diffusion radiusInhibitory link (-1)

Excitatory link (+1)

Visual input positions in camera




Node 4

Left-forward motor

Right-forward motor Left-back motor

Node 5

Node 6

Node 7

Right-back motor

Node 7

Node 6

Figure 13: Open-loop GasNet visual dis
rimination network. Gas di�usion radii are shown only where di�usion

o

urs. The node plane is shown with x; y positions of ea
h node, the 
onne
tions between ea
h node (indi
ating

whether





gas 2. Consideration of the 
on
entration of this negative gas in the region of the motor node shows that

K

2

will de
rease from 4 to 0:25, seen in



to identify a



tanh (�0:5y + 0:48) and y

1

= tanh (0:16) respe
tively, while node 4 stabilises at a 
onstant negative value,

y

4

= tanh (0:25y � 0:28) but is unused by the network. Thus both forward motor nodes are 
ontinually

on, and behaviour is governed by the two subnetworks a
ting on the ba
k motor nodes. In the next

se
tion we analyse the swit
hing subnetwork.

8.1 Stable state swit
hing

0

1C
2
 Y

7

0

1



8.1.1 Inputs below threshold

Both nodes 6 and 7 have the same high visual input threshold, with only intensities above 0:84 having

any e�e
t. So we 
an investigate the 
ase when input is below this, where the equations simplify to

y

t

6

= tanh (y

t�1

6

� 0:38) and y

t

7

= tanh (2y

t�1

7

� 0:32) (in the absen
e of gas, K

t

3

= �1;K

t

6

= 1 and

K

t

7

= 2). The stable solution to these equations is y

3

� 1:0; y

6

� �0:8; y

7

� �1:0. Note that y

7

has

3 stable �xed points, but applying �xed point stability analysis (se
tion 7) shows that from an initial

position of y

7

= 0:0, the y

7

� �1:0 solution is rea
hed. However, the other y

7

solutions are 
ru
ial when

input is above threshold, a situation that is analysed in the se
tions below. Both nodes 6 and 7 emit

negative gas when output a
tivity is high, but this is not the 
ase for the stable point. In the presen
e of

negative gas, node 3 emits positive gas - again this is not the 
ase for the stable point.

Thus we have the general pi
ture when no visual input is re
eived above the threshold level of 0:84. Both

visual input nodes 6 and 7 are highly inhibited, and the left-ba
k motor node 3 is highly ex
ited. No

nodes are emitting gas, and gas 
on
entrations are zero in the neighbourhood of ea
h node. Thus the left

motor is inhibited, and the robot 
ir
les 
ounter-
lo
kwise, due to the right motor being on for seven in

eight time-steps (remember that the spiking subnetwork on the left-ba
k motor node only turns o� the

motor one in eight time-steps, see se
tion 7.3). So what happens when inputs are above threshold?

8.1.2 Inputs above threshold

The following analysis assumes inputs take their maximum value of 1:0, but is qualitatively the same

for all values above the visual input thresholds of 0:84. In the presen
e of high input to both nodes

(again in the absen
e of high gas 
on
entrations), the equations simplify to y

t

6

= tanh (y

t�1

6

+ 0:62)

and y

t

7

= tanh (2y

t�1

7

+ 1:68); the stable solution is y

3

� �0:8; y

6

� 0:9; y

7

� 1:0. Note how all the

node output a
tivities have reversed; the previously inhibited nodes 6 and 7 are now ex
ited, while the

previously ex
ited left-ba
k motor node is now inhibited. The input threshold has produ
ed an on/o�

`swit
h'. The immediate e�e
t of high visual input to node 7 is to turn o� the left-ba
k motor node

through the inhibitory 
onne
tion, thus turning on the left motor, so the robot goes in a straight line.

However, the pi
ture is 
ompli
ated by the emission of gas from the subnetwork nodes. Both nodes 6 and

7 emit negative gas when highly a
tive, and node 3 emits positive gas in the presen
e of high negative

gas 
on
entrations. Three di�erent s
enarios are investigated: where both inputs go high at the same

time, and where either input goes high �rst.

In the model of gas di�usion used, gas 
on
entration builds up a

ording to equations 2 to 4, rea
hing

a maximum 
on
entration C = C

0

e

�(d=r)

2

. The node 6 
hara
teristi
s ensure negative gas spreads out

very qui
kly over a large area: the 
on
entration of negative gas at node 7 due to node 6 emission qui
kly

a�e
ts the transfer fun
tion (on the very next time-step). The small distan
e between nodes 6 and 7,

and the high value of the radius of gas emission r for node 6, produ
e a gas 
on
entration that drops K

7

from 2 to �0:25. Now y

t

7

= tanh (�0:25y

t�1

7

� 0:57) has a stable negative solution (�0:43) even with high



the behaviour. Even with high input, node 6 
annot now produ
e output suÆ
ient to emit gas so 
annot

inhibit node 7. Now, the three solutions to the node 7 equation with no input (y

t

7

= tanh (2y

t�1

7

� 0:32))

mentioned previously 
ome into play. From an initial 
ondition of y

7

� 1:0, even with no external input,

there is a stable solution at y

7

� 0: the network is now in a highly stable state with node 7 output

at near maximum with or without external input, node 6 inhibited due to negative gas emitted by node

7, and the left-ba
k motor inhibited due to node 7 synapse output. The overall e�e
t is to swit
h the

network into a permanent open-loop behaviour where further external input is irrelevant. Due to the

inhibition of the left-ba
k motor node, the left motor is on and the robot 
ontinues straight-ahead. So

under what 
onditions does node 7 re
eive bright visual input four or more time-steps before node 6?

8.1.3 Visual input positions, su

ess and failure modes

Figure 13 shows that the visual inputs to nodes 6 and 7 are verti
ally aligned in the visual �eld, with

7 dire
tly below 6. S
anning a
ross the square will 
ause both nodes to re
eive bright input at roughly

the same time,



8.2 Open-loop GasNet 
ontroller summary

The overall behaviour of the robot 
ontroller 
an be summarised as follows. In the absen
e of bright

visual input, the robot rotates 
ounter-
lo
kwise, with the right motor permanently ex
ited, and the left

motor inhibited by the swit
hing subnetwork. This behaviour 
ontinues, until the robot s
ans a
ross a

bright obje
t, su
h that the lower half of the visual �eld re
eives bright input signi�
antly before the

upper half. This permanently swit
hes o� the left-ba
k motor node, ex
iting the left motor and 
ausing

the robot to move straight-forward. Now the e�e
t of the spiking subnetwork is seen; on
e every eight

time-steps the right motor is turned o�, thus the robot moves in a slow 
lo
kwise ar
 ba
k towards the

triangle, whi
h it has rotated past. So we have explained in full the behaviour seen in the two example

evaluations, shown in �gure 16.

The two subnetworks analysed are 
ru
ial to the understanding of the robot 
ontroller triangle dis
rimi-

nation, in 
onjun
tion with the robot-environment 
oupling. The primary robot-environment 
oupling is

the permanent swit
h me
hanism; s
anning a
ross the square will produ
e no 
hange in the robot motion

beyond a slight slowing of the turn. By 
ontrast, s
anning a
ross the triangle will lo
k the robot into



to







As proposed in se
tion 8.3, we hypothesise that the



Double speed Quarter speed



re-evolution, however there is eviden
e of faster evolution from the median numbers of generations. Thus

from our sample of GasNet 
ontrollers, we also see eviden
e of signi�
antly faster re-evolution to modi�ed

environments; the GasNets are more tunable.

In the next se
tion, we investigate the hypothesis further, using a more abstra
t �tness evaluation. We

evolve GasNet and NoGas networks for a 
entral pattern generation problem, in whi
h the output of

a single node is evaluated against a test pattern. We then use su

essfully evolved networks to seed

the initial populations for a re-evolution environment where �tness is evaluated against a di�erent test

pattern.

11 Evolving 
entral pattern generator networks

In this se
tion, we test the GasNet and NoGas 
lasses further in a 
entral pattern generation (CPG)

experiment. We evolve fully 
onne
ted GasNet and NoGas networks, with output tested against some

required test pattern, then re-evolve su

essful 
ontrollers against di�erent test patterns. We argue that

the in
reased evolutionary speed seen for the GasNet 
lass over the NoGas 
lass on both the original

evolution and the re-evolution experiments lends support to the hypothesis that the GasNet 
lass is more

tunable to the 
hara
teristi
s of the environment, whi
h in this 
ase 
orrespond to the desired pattern

output.

11.1 The 
entral pattern generation network

The networks used in the CPG experiment 
onsisted of four fully-
onne
ted nodes, in
luding re
urrent


onne
tions (other size networks were also investigated, with 
omparable results). Conne
tion weights

between the four nodes were geneti
ally spe
i�ed, and were 
onstrained to lie in the range f�1; 1g. Ea
h

node re
eived a geneti
ally spe
i�ed �xed bias input, and the same tanh input-output transfer fun
tion

was used as in previous experiments:

O

t

i

= tanh

2

4

K

t

i

0

�

X

j2C

i

w

ji

O

t�1

j

1

A

+ b

i

3

5
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where O

t

i

is the ith node a
tivity at time-point t, K

t

i

the transfer fun
tion parameter, �xed for the NoGas

networks, but able to vary for the GasNet networks, w

ji

the 
onne
tion weight from node j to node i,

and b

i

the bias input to node i.

Gas di�usion and modulation o

urred exa
tly as des
ribed for the robot visual dis
rimination problem

in se
tion 2. Ea
h node had a set x; y position in the gas di�usion plane, and was able to emit one

of two gases, respe
tively in
reasing or de
reasing the transfer fun
tion parameter K

t

i

of nearby nodes.

However, it should be emphasised that in the CPG networks the ele
tri
al ar
hite
ture, in other words

the pattern of synapti
 
onne
tions between the nodes, was not spe
i�ed arbitrarily in the gas di�usion

plane, but spe
i�ed dire
tly on the genotype in terms of the weights between nodes. Figure 21 shows the

network setup.

The NoGas genotype 
onsisted of 18 integers in the range [0; 99℄, en
oding the 4 node biases b

i

, 4 node

transfer parameters K

i

, and 10 
onne
tion weights w

ji

. The GasNet genotype 
onsisted of the NoGas

genotype plus an extra six parameters per node for the gas di�usion parameters (the type of gas emitted

< CE >, the 
onditions under whi
h gas emission o

urs < TE >, the radius of gas emission r, the

gas build-up parameter s, and the x; y 
o-ordinates of the node in the 2D gas plane), thus the GasNet

genotype 
onsists of 42 integers in the range [0; 99℄.
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Pattern Statisti
 GasNet NoGas

Seven:Five Mean (�) 16390 (34060) 33530 (45910)

Median 2500 3260

Ten:Four Mean (�) 18000 (36080) 36000 (46230)

Median 2120 5010

Eleven:Five Mean (�) 22410 (39100) 43830 (48060)

Median 3070 5470

Eleven:Seven Mean (�) 13750 (32130) 31610 (45080)

Median 1460 2980

Table 4: The number of evaluations required to evolve su

essful GasNet and NoGas networks, for the four exper-

iments where �tness is evaluated over the four di�erent test patterns: Ten:Four, Eleven:Five, Eleven:Seven,

and Seven:Five.

Seven:Five Ten:Four Eleven:Five

T[(net)1999
41.155ts The





The di�erent time-s
ales over whi
h these two me
hanisms operate was seen to be 
ru
ial to this pattern

generation.

In the �nal se
tion, we 
on
lude with dis
ussion of temporally adaptive networks.

13 Dis
ussion: Temporally adaptive networks

One feature 
ommon to many of the neural network 
lasses used for generating adaptive behaviour, is the

in
orporation of time. Few evolutionary roboti
s pra
titioners rely on feedforward networks 
onsisting

of nodes that retain no a
tivity over time, with most using  0 Td
[(adaptiv)1998.7(e)℄TJ
yn Td
[(no)-2000.02(de0.028(no)-2000.023ng
10.8 0 000.02(dable28(no)-1ru
ial)Tj
31.9199200.63(y)℄TJ13.
ess2 0 Td
 Td
(to)Tj(som48008 0 R107he)Tj34(esed)Tj
m2 0 T3
 Td
(to)Tj(46.6801 0 Td
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/R107 0.12 Tf18.mory801 0 Td
(time)Tj
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